## CITY OF MISSION PLANNING COMMISSION

## AGENDA

August 24, 2020
7:00 PM

## Virtual Through Zoom

(Instructions for accessing the meeting will be posted to the city's website the day of the meeting)

## 1. Call to Order

2. Approval of Minutes from the July 27, 2020 Meeting
3. New Business
A. Case \# 20-03 Preliminary Development Plan - 5399 Martway Street - Lot 3 and 4 of the Mission Martway Plat
An application for Preliminary Development Plan for an approximately 164 unit apartment building at 5399 Martway Street.
a. Staff Report
b. Letter from the applicant
c. Site Plan
d. Elevations
e. Review of Traffic Study (GBA - On Call Engineers for City)
f. Traffic Study
g. Review of Stormwater Study (GBA - On Call Engineers for City)
h. Letters from Interested Parties Regarding the Project.
4. Old Business
5. PC Comments
6. Staff Updates

Questions concerning this meeting may be addressed to staff contact, Kaitlyn Service, Planner, at (913) 676-8366 or kservice@missionks.org.

# MINUTES OF THE PLANNING COMMISSION MEETING JULY 27, 2020 

Virtual Through Zoom

DRAFT
The regular meeting of the Mission Planning Commission was called to order by Chairman Mike Lee at 7:06 PM Monday, July 27, 2020. Members also present: Pete Christiansen, Jordon McGee, Robin Dukelow (arrived after roll call and approval of minutes), Stuart Braden, Charlie Troppito and Frank Bruce. Burton Taylor and Brad Davidson were absent. Also in attendance: Brian Scott, Assistant City Administrator, Kaitlyn Service, Planner, and Audrey McClanahan, Secretary to the Planning Commission.
Chair Lee: Our meeting tonight is being held virtually via Zoom. Commissioners, staff, and the applicant are still joining us remotely. The public is invited to participate by using the instructions included in the Planning Commission calendar item listed on the front page of missionks.org. Public participants will be allowed to make public comment through the comments feature. Please note that comments are visible by all participants. If you wish to make a public comment, please state your name and city of residence for the record. Please be conscientious of others trying to speak and speak slowly and clearly. If I need to confirm something that may have been difficult to hear, I will ask for clarification. With that, we will start the meeting.

## Approval of Minutes from the April 27, 2020 Meeting

Comm. Braden moved and Comm. Bruce seconded a motion to approve the minutes of the April 27, 2020, Planning Commission meeting.
The vote was taken ( $6-0$ ). The motion carried.

## New Business

## Case \#20-04 Non-Conforming Situation Permit - 6350 Johnson Drive

Mr. Scott: l'm going to hand this over to our planner. She's going to present the report for you. Kaitlyn, take it away.
Ms. Service: This is an application for a non-conforming situation permit for the property located at Johnson Drive and Russell Street, formerly Qdoba, before that it was Schlotzsky's. They are seeking a non-conforming situation permit, similar to one that we've seen recently with Johnny's Barbecue. The property is currently developed with a one-story building that was built in 1993. The applicant would like to convert it to a Taco Bell. As proposed, the property will remain really similar to how it was when it was Qdoba, with some changes to the exterior that are outlined in the Planning Commission packet, including the re-installment of the drive-through window, which was there with Schlotzsky's. Qdoba removed the drive-through window for a couple years, and then, this application proposes to reinstall the drive-through window. The building is non-conforming to the Form Based Code for the West Gateway that applies to the property. This is Box X. The Form Based Code envisions a multi-story building with retail on the first floor, residential and office space on the upper floors. It also suggests some townhomes along Russell Street. So, essentially, it envisions a two to four story building with some

# MINUTES OF THE PLANNING COMMISSION MEETING JULY 27, 2020 

townhouses on that residential street, with some parking in the interior of the lot. Since the applicant is just requesting to keep the existing building and continue to use it as is, just wants that building permit to invest in the property and convert it into the Taco Bell. They are not redeveloping the entire parcel. That's the reason that they're seeing the nonconforming situation permit. Since the repairs and renovations exceed 10 percent of the structural value, this is the process for them to be able to move forward with that.

The Planning Commission packet includes site plan information, elevations showing exterior changes to the building. There are photometric lighting plans, landscaping plan. We can get into those if there are any questions on anything specifically there. Also, I believe the applicant is here with us, and she had sent us a PowerPoint, if the Planning Commission would like to hear that.

Chair Lee: Yes, go ahead.
[Accessing/loading PowerPoint]
Aaron March, Attorney with Rouse Frets White Goss Law Firm, appeared before the Planning Commission and made the following comments:
Mr. March: I'm here today on behalf of the applicant. We are seeking approval of the nonconforming situation permit, essentially because we want to invest more than 10 percent of the current value of the property. I can't see the slides on my screen.
[Adjusting screen]
Mr. March: What I have here are simply slides of the existing facility. Brian, if you wouldn't mind going through those.

Mr. Scott: Yeah, showing the front of the building right now.
Mr. March: What we are talking about doing is, if you will, re-skinning the building. We're not changing the footprint. We're keeping the patio. We're taking off all the things that made this a Qdoba and converting it into what will look like the new, modern iterations of Taco Bell. I thought it was important for you to see the building and see that the drivethrough, there's plenty of stacking for cars for the drive-through, parking is existing. This is an allowed use, and if we were only spending less money, we wouldn't need to come in and get the approval of the non-conforming situation permit. But, our investment is about $\$ 350,000$ on the shell improvements and the landscaping. If there are specific questions you have on the operations, we've got Chris Czyz with the developer here, Rosa Paddock and Karissa Pankratz. They're the architect and landscape architect. We'd be happy to discuss with you the specifics of the architecture and design, and that was included within your packet.
Immediately to our east is a CVS, to the west is Starbucks, so it's not that we won't fit in with the existing environment there. We'd like to make the investment and would ask for your approval. I'd be happy to answer any questions that you might have.

Chair Lee: Thank you.

# MINUTES OF THE PLANNING COMMISSION MEETING JULY 27, 2020 

Comm. Troppito: Mr. Chair, I have a question about the traffic pattern, ingress and egress on Russell Avenue. Is that going to change from what it is now?
Mr. March: No. On site plan \#1, it shows the existing curb cut off of Russell Avenue, where it is today. And then, the connection to the east that goes to the CVS lot. So, the traffic situation would be exactly the same.
Comm. Troppito: Thank you.
Chair Lee: Other questions?
Comm. Dukelow: I have a question regarding the drive-through. I recall several years ago when there was a Taco Bell, I think it was, in the location where Starbucks is currently. There was an ongoing issue, l'll say, with the drive-through, because it was immediately adjacent to a resident. I was in the area just a couple days ago and I deliberately drove through that Starbucks location, and it seems that their speaker is, it's probably a better quality than the speaker was when we had that issue several years ago. I'm just wondering what the ordinance is at this time for the locations. I also want to acknowledge that there's quite an elevation change between the former Qdoba property and Russell. Like I said, there's a huge elevation change, and there's also trees along that side, so I don't anticipate there would be an issue with the drive-through speaker, but I wanted to bring that up for consideration. Is there currently any sort of ordinance for the distance of a drive-through speaker when adjacent to residential property?
Mr. Scott: No, there is nothing in the codes right now that speaks directly to a drivethrough speaker, a speaker for a drive-through restaurant. I think we have some provisions that may speak more to music being played kind of business. Sometimes restaurants will play music outdoors, or you might have, like a loudspeaker system for a particular establishment. You know, so-and-so in line three type of thing, an announcement system. We do, to a certain degree, try to regulate that. I don't believe that's in the proposal before you tonight. It's just the drive-through speaker. If that's something that would be... I would be hard pressed, if anybody would complain about hearing that, if that was an issue, we would probably just address that with management, see if there's something they could do to turn down the volume of that a little bit. There is the elevation, like you said, there is a wall there, a retaining wall that kind of holds up Russell Avenue, for lack of a better term, on that site. And then, directly to the north, I believe there is an office building. Brill's office building. I don't know that there's any real close by residential other than what's on the other side of Russell, just behind the Starbucks. That would be the closest residential.
Ms. Dukelow: Right. I believe there's just one property, maybe two, that would be even considered adjacent.
Mr. Scott: Yeah.
Chair Lee: Brian, did the Qdoba not have a drive-through?
Mr. Scott: The Qdoba restaurant did not have a drive-through.

# MINUTES OF THE PLANNING COMMISSION MEETING JULY 27, 2020 

Chair Lee: I know Schlotzsky's did originally, but it was on the other side, the other elevation, wasn't it?
Mr. Scott: Correct. The Schlotzsky's did, but when Qdoba moved in, they took out that drive-through. That was not a component of their operation.
Chair Lee: Other questions of the applicant? [None.]
Mr. Scott: Do you all have the proposed motion that was sent earlier today?
Chair Lee: Yes.
Comm. Troppito: I'll make a motion of approval. I move that the Planning Commission approve the non-conforming situation permit for Application No. 20-04, allowing the applicant to make modifications to the exterior façade of the building at 6350 Johnson Drive, including installation of a drive-through window, once applicable building permits have been reviewed and issued.

## Comm. Braden: Second.

The vote was taken (7-0). The motion passed.
Mr. March: Could I just interject? It's been a pleasure working with your staff on this. These are challenging times, and Bruce and Kaitlyn made this as painless as you can make this type of application, and the comments that we received from them were constructive, and I think resulted in a better site plan and a better project. So, thank you very much.

## Old Business

Chair Lee: Any old business, Brian?
Mr. Scott: No.
Comm. Dukelow: May I ask a question? I was going to ask about the old Johnny's site. Is The Other Place still planning to occupy that?
Mr. Scott: No. The Other Place did not exercise their option to purchase the property.
Chair Lee: Oh. I was wondering why the For Sale sign was there.
Mr. Scott: Yeah, as you'll recall, we did that back in February, I believe, and it was right on the cusp of this whole pandemic. Just with the pandemic coming on and all the stay-in-place orders, and bars having to close and everything, they really saw a drop in their business at their other locations. They just decided that it would not be financially feasible at this time to purchase that property and open up another restaurant. That's kind of where we're at. We've had some folks call and inquire about the property. I think we may have a potential applicant looking to do something with that. I just heard about it today, so I don't have a whole lot of information on that.
Chair Lee: The apartments by Rock Creek, are those proceeding? What's the status on that?

# MINUTES OF THE PLANNING COMMISSION MEETING JULY 27, 2020 

Mr. Scott: Yes. They submitted their application for a preliminary development plan a few weeks ago. Kaitlyn and I have reviewed those plans, sent comments back. I just received our engineer's report on the stormwater and transportation review. I didn't get a chance to read it today, I was going to do it tomorrow, then send comments back to the applicant. They are proceeding towards the August $24^{\text {th }}$ meeting. That's really their goal. I think they will probably hit that. If you've been following that, it's a Sunflower group. They are a pretty reputable developer here in the Kansas City area, really the larger Midwest. They've done projects in St. Louis, I think maybe Denver, Omaha. They are based here in Kansas City, and a lot of their projects are primarily multifamily. They've kind of developed a market niche for taking older properties in more densely urban areas and refurbishing them using historic tax credits, into, like, loft apartments, or some kind of apartments. That market has started to dry up a little bit for them, so they're looking for other projects, more out in the suburbs. They saw an opportunity with the Mission Bowl site for a potential multifamily project. It would be about 160 apartment units, kind of a mix of one bedroom, two bedroom, and studio-type apartments. It would have all the amenities that we've seen with some of the other applications of recent. There would actually be a pool on the top deck of the building, and outdoor pool, a workout facility, a general lounge setting with a large screen television, gourmet type of kitchen for the residents. Some of those types of amenities. That would be, like I said, at the old Mission Bowl site at 5399 Martway. We did a neighborhood meeting with the neighbors that lived behind the property, probably two months ago? Kaitlyn? Something like that.
Ms. Service: Yes.
Mr. Scott: I did not participate in that meeting, I was actually on vacation that week, but Kaitlyn and Laura did. They thought it went relatively well, and of course, there are folks who have lots of questions about what's being built in their back yard. Yeah, I think they're more curious than anything else. I didn't really sense an overwhelming feeling of opposition to the project.
Comm. Braden: Okay. How many stories?
Mr. Scott: They're asking for five. They want to basically build a building up and put parking on the ground floor, then four stories of apartment units.
Comm. Troppito: How far along are they on financing of this project?
Mr. Scott: That's a good question. I don't know that they've actually talked to a lender yet. I know they had some lenders that were interested.
Comm. Troppito: But no commitment yet, right?
Mr. Scott: I don't think there's any formal commitment on construction loan yet, not. There are some banks here in Mission that caught wind of what is being proposed and have gone so far as to reach out to the developer and say they are interested in giving a construction loan.
Comm. Troppito: Yes. That's why I asked.
Mr. Scott: That's my understanding. That's what the developer has told me.

# MINUTES OF THE PLANNING COMMISSION MEETING JULY 27, 2020 

Comm. Troppito: Which leads me to another point, when it's time to discuss it, I guess, under PC comments. I have a brief point to make about the Gateway project. Then or now?
Chair Lee: Go ahead. You've got the floor.
Comm. Troppito: Okay. Well, I suppose everyone has reviewed the KC Star article about the Gateway project. Of course, it was all Mission-centric, being about the Mission project, but the discussion, you know, which was reasonable, but the discussion I think really should have looked out a little bit further across the country, and across the state of Kansas. I mean, there are just literally thousands of construction projects on hold now, waiting construction. Why I bring that up is because in looking at that article on line, there were a lot of public comments there that I think dealt with some misconceptions, going way back to when the old Mission Mall was closed. Anyway, the main point is, if anyone cares to go to ConstructionConnect.comldelayed-projects, you will see a map, and you can click on any state in the United States and it will bring up a whole list of delayed projects, including those in the state of Kansas. So, the point is that Mission Gateway's issues with financing certainly aren't anything out of the ordinary with what's going on across the country related to coronavirus. It is having a financial impact on these construction projects. That's a point I think the City needs to make.
Mr. Scott: Yes, very much so. I try to bring that point home anytime I talk to somebody about the project. It's a complicated project with a lot of twists and turns, and COVID has really thrown it for a loop.
Comm. Troppito: Well, again, that's ConstructionConnect.com\delayed-projects. I'll send you the link, Brian.
Mr. Scott: Okay. Thank you for sharing.
Chair Lee: Very good.

## Staff Updates

Mr. Scott informed the Commission that August 6 will be the first meeting with the steering committee to kick off the Comprehensive Land Use Plan update. The consultants will create a webpage regarding that plan update.
Comm. Troppito brought up environmental data reports. He requested staff look into the cost of acquiring such report. He would like to explore the cost of gaining online access for the City as a whole.
Comm. Dukelow brought up the corner of Lamar and Martway. Mr. Scott said it will be addressed in the near future.

## ADJOURNMENT

With no other agenda items, Comm. Dukelow moved and Comm. Christiansen seconded a motion to adjourn. (Vote was unanimous). The motion carried. The meeting adjourned at 7:36 P.M.

# MINUTES OF THE PLANNING COMMISSION MEETING 

 JULY 27, 2020Mike Lee, Chair

## ATTEST:

[^0]STAFF REPORT
Planning Commission Meeting August 24, 2020

## AGENDA ITEM NO.:

PROJECT NUMBER / TITLE:
REQUEST:
LOCATION:
APPLICANT:
Banks Floodman,
Mission Apartments, LLC
901 New Hampshire St., Suite 201
Lawrence, KS 66044

PROPERTY OWNER:
Ridgeview North Associates LLC
5426 Martway St.
Mission, KS 66205
STAFF CONTACT:
Kaitlyn Service, City Planner

## ADVERTISEMENT:

8/4/20- The Legal Record newspaper
PUBLIC HEARING:
Planning Commission meeting, August 24, 2020


## PROPERTY INFORMATION AND PROJECT BACKGROUND

The subject property, addressed as 5399 Martway, comprises two lots located near the southeast corner of Nall Avenue and Martway Street. The subject property is the site of the former Mission Bowl bowling alley and miniature golf course, constructed in 1958. The structure was severely damaged in a fire in 2015. Subsequent litigation impeded the restoration of the structure. The City declared the structure unsafe in December of 2019 and ordered that it be repaired or demolished.

The pending litigation involving the property was resolved earlier this year, and Ridgeview North Associates, LLC, owner of the adjacent Mission Mart shopping center, took control of the property. Ridgeview North has a contract pending to sell two of the lots that comprise the property to Mission Bowl, LLC ( a development corporation created by the Sunflower Development Group) for the purpose of redeveloping the property into a multi-family housing project. Ridgview would keep the most westerly lot for overflow parking associated with the shopping center across the street. There is a cell tower, and associated equipment, located on the east side of the subject property. This cell tower is a separate parcel and not part of this arrangement.

The applicant, Mission Bowl, LLC, has now submitted a preliminary development plan to the City for the construction of a Class A, five-story apartment building on the two lots (approximately 3.45 acres) that it intends to purchase. Ground floor uses fronting Martway Street will include live-work units, lobby and leasing office, a screened parking garage, and parks. The proposal aims to create a linear park experience along the existing Rock Creek Trail by adding trees, landscaping and pedestrian amenities where none currently exist. A pocket fitness park and a small pocket dog park are proposed for the west side of the building. In addition to the garage parking on the first floor of the building, a surface parking lot is proposed behind the building.

Approximately 164 apartments will be located on floors two thru five. The apartments will be a complement of two bedroom, one bedroom, and studio units. Various resident amenities including theater room, fitness area, and clubhouse will also be located on these floors. And, a rooftop pool and patio is proposed for a portion of the fifth floor toward the back of the building.

The overall design of the building is intended to emulate some of the architectural characteristics found throughout downtown Mission including the strong horizontal lines, archways, brickwork and color palette found on many of the buildings along Johnson Drive and elsewhere. The building's location will offer access within walking and biking distance to many of the businesses and amenities within downtown Mission.

## APPLICABLE COMPREHENSIVE LAND USE PLAN, MASTER PLANS, AND ZONING

The property is studied in the Comprehensive Plan, Rock Creek Redevelopment Plan, East Gateway Redevelopment Plan, and Smart Moves 3.0 Regional Transit Plan.

## Comprehensive Land Use Plan

The Comprehensive Plan designates the site as future Medium-Density Mixed Use. This category primarily consists of medium-density attached residential housing, such as apartment dwellings. Additional uses include live-work, offices, and limited retail stores.

The Plan envisions a pedestrian-friendly area with Floor Area Ratios of 1.0 to 3.0. The district is intended to serve as a transition zone between low-density, residential neighborhoods and
areas of higher intensity development.
The proposed project is an apartment building with live-work spaces and a Floor Area Ratio of 1.05. Multi-family housing at this location would serve as a transition zone between the existing single-family residences to the south and higher intensity uses at the Mission Mart and Security Bank to the north. The proposal is in conformance with the intent of the Comprehensive Plan.

## Rock Creek Redevelopment Master Plan

The Rock Creek Redevelopment Master Plan plan notes that the Mission Bowl property "provides redevelopment opportunities as it is largely covered by surface parking lots." While the area is currently a "sea of surface parking," the Plan views every redevelopment project as an opportunity to foster an active, pedestrianfriendly streetscape and reverse the trend of impermeability and storm water runoff. The Plan emphasizes a public realm and green infrastructure principles.

## Floor Area Ratio

The floor area ratio (FAR) is the relationship between the total amount of usable floor area that a building has and the total area of the lot on which the building stands. A low ratio indicates auto-oriented design. A higher ratio indicates pedestrianoriented design.

Walkable downtowns and healthy transit generally require FARs to be at least 1.0 to 3.0. FARs less than about 1.0 are thought to increase auto dependence and compromise walkability. A FAR of at least 1.0 is considered ideal for creating transportation choices.

For reference, the Target in Mission has an approximate FAR of 0.34. Mack True Value Hardware has an approximate FAR of 1.0.

Floor Area Ratio $=\frac{\text { Total Building Floor Area }}{\text { Gross Lot Area }}$

## Public Realm

The Rock Creek Redevelopment Master Plan states that the success of the area is dependent upon a strongly defined public realm. Public realm comprises the streets, parks, green spaces and other outdoor places that are available for everyone to use. Public realm does not exist in isolation but in the context of its adjacent buildings, their uses and its location in a wider network of public and private space. The three key elements that influence the public realm are:

1. The Public Realm Itself - The Rock Creek Trail borders the Mission Bowl property on the north side. The proposed development aims to create a true linear park experience for pedestrians along this portion of the trail, rather than the feeling of simply walking on a wide sidewalk. Linear park features along the trail, such as landscaping, benches, planters, shade trees, bicycle racks, and pocket parks, are proposed to align with the city's vision of an "activated" street.
2. Buildings that Define the Public Realm - The plan encourages mixed-use buildings to capitalize on the existing personalized scale of the Johnson Drive Corridor. In the absence of ground floor public/commercial uses, the proposal uses the following building design techniques to aim for a vibrant pedestrian experience:

- Along Martway Street, $75 \%$ of the frontage is devoted to occupy-able live/work spaces, leasing office, and resident clubhouse amenities.
- The first floor of the building facade incorporates a large expanse of glass to
reinforce a sense of activity within that engages the pedestrian and provides a sense of safety.
- First floor patios and upper level balconies serve as "outdoor living rooms," encourage direct or indirect social interaction, and foster community connectedness.
- The proposed building incorporates architectural elements that relate to the human scale, such as the patios and entrances of the live-work units.
- A concentration of building details at sidewalk level creates visual interest and enhances the pedestrian environment.
- Proposed building is oriented to Martway Street and built to the build-to line. Parking is sited behind the building in the interior of the lot.

3. People who inhabit the public realm and the way they use the space - A vibrant public realm encourages residents to explore and experience their community. It also contributes to the city's competitiveness and the image of the city, attracting people to live, work, and visit Mission.

## Green Infrastructure

The Rock Creek Redevelopment Master Plan acknowledges that when original development replaced native plant material with concrete, it increased flooding potential and put pressure on the city's stormwater infrastructure. Employing stormwater best management practices (BMPs) would reduce pressure on the city's stormwater infrastructure while providing environmental benefits, creating attractive streetscapes, and enhancing livability. The Plan calls for redevelopment that includes:

1. Less Impervious Surfaces - The proposed site improvements would decrease the amount of impervious area on the site by converting 0.47 acres of current impervious surface into landscaping and recreational open space, such as the linear trail park and pocket parks. The Stormwater Report submitted with the preliminary development plan application shows the existing and proposed surface areas:

Table 1: Summary of Surface Area Types'

|  | Impervious Surface | Building | Open Space | Total |
| :---: | :---: | :---: | :---: | :---: |
| Existing | 2.99 | 0.48 | 0.13 | 3.60 |
| Proposed | 2.08 | 0.92 | 0.60 | 3.60 |
| Change | -0.91 | +0.44 | +0.47 |  |

- All areas in acres

The reduction of impervious areas would reduce peak stormwater runoff, which reduces flood risk, decreases water pollution, and decreases the volume of water handled by the city's stormwater infrastructure.
2. Water Quality - In addition to increased pervious surface and native landscaping,
structural stormwater BMP treatment is proposed to improve water quality. The proposed hydrodynamic separator is engineered to manage stormwater for water quality treatment. According to the Stormwater Report (see attached) a level of service of 1.88 would be achieved for the site, providing a small water quality benefit. The proposed BMPs would be privately maintained by the property owner.
3. Sustainable Techniques and Pedestrian Friendly Environments - Native and/ or drought resistant trees, shrubs, and plantings are proposed for the site. In addition to creating aesthetically pleasing pedestrian environments, landscaping provides shade and creates bio-climatic conditions which reduce heat-island effects and storm water runoff.

## East Gateway Redevelopment Plan

When the plan was adopted in 2006, it was expected that the Mission Bowl business would remain. The plan suggests landscaping improvements to the site. The Future Land Use Map designates the Mission Bowl property as "future mixed use".

Overall, the plan calls for higher density mixed-use development and urban housing options. The plan echoes the community's desire for an active, pedestrian friendly, vibrant streetscape with quality landscaping and a strongly defined public realm.

## Smart Moves 3.0 Regional Transit Plan

Smart Moves 3.0 is the Kansas City region's long-range plan for transit and mobility. It is a project of the Mid-America Regional Council (MARC) and its transit partners, including the agencies that coordinate to provide transit in Mission: Johnson County, Kansas; RideKC; and Kansas City Area Transit Authority (KCATA).

The Plan acts as a blueprint for cities that seek to:

- Support transit with their planning and zoning decisions.
- Empower residents to access jobs via transit.
- Decrease greenhouse gas emissions and other transportation-related pollutants.

The Mission Transit Center, adjacent to the site of the proposed development, is designated as a Mobility Hub because it is a converging point for public transit. Mobility hubs are also areas where there is an intensive concentration of working, living, shopping and/or playing in the form of mixed-use development. The transit-supportive strategies listed below are recommended for development near Mobility Hubs.

1. Parking - The Plan recommends that developments include bicycle parking for residents and employees. The proposed apartment building would include temporary outdoor bicycle parking, long-term indoor bicycle storage, and a bicycle repair station for residents.

The Plan cautions against including an excessive amount of vehicle parking because the spaces add to the cost of development and accelerate the depletion of available land. The number of parking spaces proposed by the application is exactly the minimum number of parking spaces required by city code.
2. Land Use - The Plan recognizes that efficient transit thrives on density. The Plan recommends cities consider density and mixed uses near Mobility Hubs. The proposed
development would increase the density of the parcel. The proposal is predominantly residential with accessory resident workspaces and leasing office.
3. Housing - The Plan notes it is easier for residents to rely on transit to commute or run errands if their homes are located close to transit and mobility hubs. Affordable housing options near transit services will better serve the needs of people who do not have a car, whether as a matter of personal preference or because of limitations (such as insufficient income or inability to drive).

The Plan recommends affordable and multi-housing options near Mobility Hubs. The proposed development would provide approximately 164 multi-family housing units. The City is in discussions with the applicant to consider having a certain number of units leased at a rate that meets the definition of affordable housing.
4. Transportation Options - The Plan suggests considering how well the site integrates with transit, pedestrian, and bicycle access. The site is near the Mission Transit Center, Rock Creek Trail, and walkable downtown, making it well connected to bicycle, pedestrian, and transit facilities.

## Zoning Intent

The site is zoned Main Street District 2 "MS2." It is located in the East Gateway Overlay District and subject to the Mission, Kansas Design Guidelines for the Johnson Drive Corridor.

The MS2 District is intended to provide development opportunities consistent with the existing character surrounding the core of downtown Mission. MS2 encourages an active streetscape with a pedestrian friendly shopping environment and restricted automobile-oriented uses. The District intends to support the businesses in the downtown area by encouraging residential and office uses within mixed-use buildings.

## Surrounding properties are zoned and developed as follows:

- North:"MS2" Main Street District 2
- Mission Mart shopping center; RideKC Mission Transit Center; Security Bank of Kansas City
- East: "MS2" Main Street District 2
- Parking lot for Security Bank of Kansas City
- South: "R-1" Single-Family Residential \& "MS2" Main Street District 2
- Single-family homes; Rock Creek; Johnson County Wastewater
- West: "MS2" Main Street District 2
- Parking lot for The Peanut/ Mission Mart; Birch Park
- Other: "MS2" Main Street District 2
- An existing land-locked cell tower parcel is surrounded by the subject property.

The East Gateway Overlay District is intended to ensure the City of Mission's downtown as an economically vibrant area with great appeal to area-wide patrons by limiting new auto service businesses, implementing design guidelines, ensuring that any new development or redevelopment is in conformance with the recommendations of the Future Land Use Map in the City's Comprehensive Plan and the HyettPalma's Downtown Action Agenda.

Mission's Design Guidelines for the Johnson Drive Corridor are intended to create a vibrant shopping and commercial district with a cohesive identity founded on its historic Mission style precedents, and variants appropriate to the context.

## PLAN REVIEW

The zoning code includes regulations on permitted uses, height and area, parking, and development standards, and performance standards. The application complies with a majority of the conventional zoning code stipulations and requests three deviations in accordance with the standards for planned zoning districts.

## Planned District and Deviation Requests

The Main Street District 2 "MS2" is a planned zoning district. Mission's planned zoning districts encourage innovative and imaginative development that supports the vision of the community and exceeds the quality of projects developed under conventional zoning. Planned zoning districts provide flexibility for deviations from conventional MS2 development standards when the deviations will:

1. Result in a development of greater quality than a development that conforms to the conventional development standards and
2. Result in a development that more closely aligns with the community vision outlined in the city's master plans, compared to a development that conforms to the conventional development standards.

The following deviations are requested:
Permitted Uses: The MS2 district allows residential uses as a part of a commercial or office building or complex. (§ 410.230(A)(3))

- Residential and office uses are permitted on the ground floor level of mixed-use buildings or complexes in order to support the businesses in the downtown area. (§ 410.220)
- Residential uses shall not consist of more than fifty percent (50\%) of the ground level street frontage within any commercial or office building or complex. (§ 410.260(B))

The proposed building is residential with accessory ground-floor leasing office, resident workspaces, and business center. Because the proposed building is primarily residential without traditional office or retail uses, it would require a deviation.

The project narrative offers the following explanation: "In today's shifting retail and office environments, it is crucial to bring new residents closer to existing retail and office spaces, rather than to build more of the same uses that will dilute the vitality of the corridor as a whole." The applicant expresses desire to support, rather than compete with, existing businesses downtown.

When evaluating whether the proposed deviation would result in a higher quality project that better aligns with the community's plans, the following may be considered:

- One goal of the MS2 District is to support the businesses in the downtown area with residential uses.
- The Comprehensive Plan envisions this property will develop into medium-density apartments with accessory live-work spaces.
- The Comprehensive Plan intends for this property to serve as a transition zone between low-density residential neighborhoods and areas of higher intensity development. Multi-family housing at this location would serve as a transition zone between the existing single family residences to the south and higher intensity uses at the Mission Mart and Security Bank to the north. Omission of commercial uses, in favor of residential uses, offers the least potential to be intrusive to adjacent residences.
- The proposed building implements techniques from the Johnson Drive Design Guidelines to mimic the pedestrian-friendly experience of a mixed-use development. A leasing office and resident workspaces, and business center, are proposed for the ground floor behind a clear glass "storefront" appearance.
- The zoning code requires that residential areas in planned zoning districts be planned in a manner that will produce more usable open space, better recreational opportunities, safer and more attractive neighborhoods than under standard zoning and development techniques. The proposed development would add 0.47 acres of open recreational space, including two pocket parks and a linear park along Rock Creek Trail. (§ 405.080(A)(3))


## Height and Density:

Height: The MS2 District promotes multi-story structures with top-floor setbacks. (§ 410.220) Conventional MS2 zoning limits building height to 3 stories and/or 45 feet. (§ 410.240(A)(1))

The project narrative states: "A deviation of two stories and 13-15 feet are proposed in order to make the project viable and contribute to the community at the highest level. This slight height deviation leads to a building that is of a suitable massing for the neighborhood. It is the correct size building to complement Mission Mart to the north, Security Bank, at +/- 95 feet tall, and the residential neighborhood to the south, with a ground plane approximately 30 feet above this site."

Density: This minimum lot area per multi-family dwelling is 1,245 square feet per unit ( 35 units per acre). Under conventional zoning, 121 units would be allowed on the 3.45 acre lot. (§ 410.240(A)(3))

While application materials list the acreage of the site as 3.17 acres, the official plat of the property, which is sealed by a Professional Surveyor and recorded with the Register of Deeds, indicates that actual acreage of the site is 3.45 acres. Additionally, application materials vary in the number of apartment units requested. Several application materials list 164 units, the Traffic Impact Study lists 166 units, and the signed application form lists 160-168.

A deviation of 47 units is required to allow 168 units on the 3.45 acre lot.

When evaluating whether the proposed deviations would result in a higher quality project that better aligns with the community's plans, the following may be considered:

- The Comprehensive Plan envisions a medium density development with a Floor Area Ratio (FAR) of 1.0 to 3.0.
- The application proposes a FAR of 1.05 . This is nearly the lowest density FAR that would conform to the Comprehensive Plan. Development on the lower end of the target FAR range has the least potential to be intrusive to adjacent residences.
- A minimum FAR of 1.0 without a height deviation would require the building to cover more of the lot, leaving insufficient room for parking. Without a height deviation, a deviation for parking would likely be necessary to achieve the target FAR. The application proposes sufficient parking in exchange for the height deviation.
- A minimum FAR of 1.0 without a height deviation would require the building to cover more of the lot, depleting the land available for pervious surfaces, such as recreational open space and landscaping. Without a height deviation, increased impervious surfaces would likely be necessary to achieve the target FAR, which would have a negative impact on stormwater management. The application proposes reduced flood risk, decreased water pollution, and decreased pressure on the city's stormwater infrastructure in exchange for the height deviation.
- A minimum FAR of 1.0 without a height deviation would require the building to cover more of the lot, which would bring the building closer to the residences, the floodplain, and Rock Creek to the south of the property.

Floor area ratio (FAR) is the ratio of the floor area of a building to the area of the lot on which the building is located. For example, the diagram below illustrates three simple ways that a 1.0 FAR might be reached: one story covering the entire lot, 2 stories covering half of the lot, or 4 stories covering a quarter of the lot all result in the same FAR.

Floor Area Ratio (FAR) of 1.0


1 story
(100\% lot coverage)


2 stories
(50\% lot coverage)


4 stories
(25\% lot coverage)

- The Comprehensive Plan envisions the subject property as a transition zone between the higher intensity development to the north and the low-density residential
neighborhoods to the south.
- High intensity: The Security Bank building is about 95 feet. The cell tower is about 160 feet.
- Transition zone: The proposed building is about 58-61 feet.
- Low intensity: The ground floor of the residences is about 30 feet above the ground floor of the Mission Bowl Property. The application includes a rendering showing the proposed building only slightly above a two-story home to the south of the subject property.
- The East Gateway Redevelopment Plan calls for higher density development and urban housing options.
- Smart Moves 3.0 Regional Transit Plan suggests density near the Mission Transit Center.
- The proposed building implements techniques from the Johnson Drive Design Guidelines to complement the proportion and scale of the surrounding area.
- The proposed building is designed to reduce its perceived height by dividing the building mass into smaller scale components. The massing and overall configuration of the building is broken down by recessing and projecting elements.
- Stories beyond the second story are articulated by the use of setbacks and a change of materials to enhance the proportion and scale of the overall façade.
- The lower level of the building is differentiated architecturally from upper levels.
- The proposed building incorporates architectural elements that relate to the human scale, such as the patios and entrances of the live-work units.
- Granting this deviation would not waive any other design requirements of the Johnson Drive Design Guidelines, which are also intended to reinforce a pedestrian scale streetscape and architectural styles that are compatible with the Johnson Drive corridor.

No further deviations are requested by the application.

## Code Review: Standards of Development

The Planning Commission, in the process of approving the preliminary development plan, may approve use, height, and density deviations upon a finding that all of the following conditions have been met (§ 405.090):

1. The granting of the deviation will not adversely affect the rights of adjacent property owners.

The requested deviations do not infringe upon the rights of other adjacent property owners to continue to reasonably use their own properties. The proposed development repeats a pattern already established in the surrounding downtown neighborhood of multi-story multi-family housing. Properties to the north, east, and west are commercial. A property within 200 feet of the proposal contains a +/-95 foot tall building. The
proposal is separated from residences to the south by the Johnson County Wastewater facility, Rock Creek, a significant distance, and a significant elevation change. Access easements to the cell tower, Johnson County Wastewater, and Mission Mart / The Peanut parking lot will be provided.
2. That the deviation desired will not adversely affect the public health, safety, morals, order, convenience, prosperity or general welfare.

The Stormwater Study and Traffic Impact Study concluded that the development, including the deviations, can occur without negative impact on stormwater or traffic.

The Traffic Impact Study found that all intersections are projected to operate at an acceptable level of service. The surrounding roadway network already has the adequate geometrics and traffic controls needed to serve the community. In some instances (particularly on evenings and weekends), this proposed residential development will likely create less traffic demand than the former bowling alley and miniature golf course.

The Stormwater Study found that the proposed development would provide the benefit of reducing peak stormwater runoff from the site. Additionally BMPs associated with the development would provide a water quality benefit.
3. The granting of the deviation will not be opposed to the general spirit and intent of this Title.

The requested deviations meet the spirit and intent of the code as discussed in the section above by providing residential uses to support the businesses in the downtown area and maintaining a pedestrian scale through design.
4. That it has been determined the granting of a deviation will not result in extraordinary public expense, create nuisances, cause fraud on or victimization of the public or conflict with existing federal or state laws.

The proposed deviations will not create additional public expense, nuisances, or violate other laws.

## Conventional Zoning Code Compliance

Parking: For residential uses, the minimum number of off-street parking spaces shall be provided on the premises as follows:

1. Efficiency apartments - one (1) space per unit.
2. One (1) bedroom units - one (1) space per unit.
3. Two (2) or three (3) bedroom units - two (2) spaces per unit.
4. Four (4) bedroom units - two and one-half ( $21 / 2$ ) spaces per unit. (§ 410.250(B))

The submitted plan complies with this requirement by providing 197 parking spaces for the 164 units proposed. This includes garage parking on the first floor of the building and a surface parking lot behind the building. Access to the parking area would be from Martway Street. The application proposes:

- Live/Work - 7 Units - 14 parking spaces
- Efficiency - 72 Units - 72 parking spaces
- 1 Bedroom- 59 Units - 59 parking spaces
- 2 Bedroom- 26 Units - 52 parking spaces
- Total - 164 Units -197 parking spaces

Yards: For properties adjacent to properties zoned "R-1", a twenty-five (25) foot building setback from said properties is required. (§ $410.240(\mathrm{~A})(2)$ ). The proposed development exceeds the 25 foot setback requirement.

Landscaping: The property does not currently have any landscaping along Rock Creek Trail/ Martway Street or within the parking lot. The application includes a conceptual landscape plan that meets and exceeds the city code requirements listed below. A more detailed landscaping plan will be provided with the Final Development Plan application.

Minimum Tree Requirement: A minimum of one (1) tree is required for each fifty (50) feet of street frontage. This property has 519.08 feet of street frontage. Therefore a minimum of 11 trees are required within the landscaped area along Rock Creek Trail .

In addition, one (1) tree must be provided for every three thousand $(3,000)$ square feet of landscaped open space. The proposal includes 26,136 square feet of open space, therefore 9 trees are required.

In addition, one (1) tree must be provided for each twenty (20) cars of parking area located dispersed in the parking area not at the perimeter. The proposal includes 197 parking spaces, therefore 10 trees are required.

In total, a minimum of 30 trees are required. Trees along Rock Creek Trail and within the parking lot are required to be medium or large deciduous trees, capable of providing shade at maturity. Tree species will be selected in accordance with the "Preferred Tree Species for Northeast Kansas" document published by the Kansas Forest Service.

Planting Requirement Within Parking Lot: Not less than six percent (6\%) of the interior of a parking lot shall be landscaped. The landscaping and planting areas shall be reasonably dispersed throughout the parking lots. (§ 415 Article III)

Screening: City code requires screening and fencing at the locations noted below.

1. Parking garage

- A patterned wood tone parking screen is proposed.

2. Swimming pool

- The fifth floor amenity terrace is proposed to be screened by a wall and climbing perennial evergreen vines.

3. Along the south side/ rear property lines where the property abuts a residentially zoned district

- Typically, the required screening would include evergreen trees and a solid fence at least six feet tall. However since the ground floor of the residences is about 30 feet above the ground floor of the Mission Bowl property, a 6 foot fence and plant material would not provide the desired screening effect. For screening, the application proposes to provide covered parking along the south side of the
property. Additionally, a trellis would be provided at the south end of parking stalls planted with climbing perennial evergreen vines.

4. Roof-mounted mechanical equipment

- The submitted building elevations show that the roof-mounted mechanical equipment will be screened on all sides to the extent that such equipment will not be seen from adjacent property or street at normal eye level. The screen will be of a material that harmonizes with the building.

5. Trash bins:

- The submitted plan shows that enclosure and screening methods will be used in connection with trash bins on the property. No trash bin will be visible from off the property and a permanent masonry or frame enclosure will be provided and maintained for each bin. (§ 415.030(A))

Lighting: The application notes that low impact site lighting will be incorporated to adequately light the site while not disturbing surrounding properties. A photometric plan will be submitted with the Final Development Plan application. The photometric plan will include the location, height, and style of all site lighting. The plans will include a point by point grid indicating the footcandle power of the light fixtures onto the site.

Any lights used to illuminate the parking area will be arranged, located, shielded and screened to direct light away from any adjoining or abutting residential districts. (§ 425.080)

Lighting associated with the swimming pool will be maintained in a manner so that it is not a nuisance to the neighborhood property. (§ 505.420)

Signs: City code allows three primary permanent signs, which may include wall signs, a projecting sign, and/ or a monument sign. Additionally one permanent pedestrian-oriented sign is allowed. The code also allows one temporary construction site identification sign and one temporary "now leasing" sign. If the applicant desires private sign criteria, the request will be made with the Final Development Application. If requested, private sign criteria would require Planning Commission approval. All signs require a sign permit. (Chapter 430)

## DESIGN GUIDELINES FOR THE JOHNSON DRIVE CORRIDOR

The Johnson Drive Design Guidelines provide a wide range of recommended and required design elements applicable to the development. These include streetscaping and the relationship of buildings and their exterior facades to public streets as well as building materials and screening. Many of these details will be fully evaluated with the Final Development Plan application.

The overall design of the proposed building is intended to emulate the architectural styles found throughout downtown Mission, including horizontal datums, frame-and-infill, mosaic facades, and expressed corners. Additionally, the submitted plans show alignment with the following sections of the Design Guidelines:

Building Orientation and Siting: The proposed building is oriented to Martway Street, built to the property line, and extends the entire width of Martway Street. Building orientation creates a cohesive relationship with the street.

Parking: The proposed parking lot provides a minimum of $6 \%$ green space. The parking lot is screened from Martway Street via its location behind the building.

Parking Structures: Live-work units are included on the first floor along Martway Street. A patterned parking screen and landscaping enhances the pedestrian view.

Site Access: The Rock Creek Trail is 8 feet wide and compliant with Americans with Disabilities Act (ADA) requirements. Pedestrian amenities (landscaping, benches, planters, shade trees, bicycle racks, and pocket parks) are included.

Landscaping: Landscaping opportunities along Martway Street are capitalized on.
Building Facades: All visible facades are treated similarly with respect to color, material, form, and detailing. All visible facades respect the scale of immediately adjacent buildings. Building details are appropriately located to enhance pedestrian access. Wall surfaces incorporate features that create a pattern of shade and shadow.

Building Proportion and Scale: The building is compatible in scale and proportion with other buildings in the immediate context. The building incorporates elements, such as patios, that relate it to the human scale. The first floor is differentiated from upper levels using design treatments for the live-work units. The building is reduced in perceived scale by dividing the building mass into smaller components. The building uses mosaic facade to incorporate a sufficient sense of rhythm. The upper stories incorporate a setback.

Building Materials: Conceptual building elevations show masonry facade pillars and white masonry or stucco facade, complemented by wood tone facade highlights, terra cotta toned horizontals. Colors for exterior finishes are selected to provide visual unity. The predominant colors of the building matches or complements the natural yellow, pale tan, beige, brick, and brown tones existing throughout the corridor.

Windows: The first floor building front incorporates a large expanse of clear glass. Windows are not highly tinted or tinted in unnatural colors or with a reflective finish.

## LIVE-WORK UNITS

A live-work unit is a single unit consisting of both a workspace and a residential space. Both spaces are occupied by the same tenant. The live-work unit is an old idea that has been modernized to meet the needs of entrepreneurs, small businesses and professionals. In the past, live-work units often meant a storekeeper lived in the apartment above their shop. The Mission Bowl Apartment application proposes a contemporary version of this.

The plan proposes approximately seven live-work units. The live-work units will front Martway with the workspaces located on the ground floor, accessible only from Martway and the Rock Creek Trail, and the live spaces located above, accessible only from the corridor on the second level. Each unit will contain an inner stair that connects the live and work spaces.

Staff proposes the following stipulations be applied to the live-work units:

1. The workspace component of live-work units are intended for use by the following occupations: accountants; architects; artists and artisans; attorneys, computer software and multimedia related professionals; consultants; engineers; fashion, graphic, interior and other designers; hair stylists; home-based office workers, insurance and real estate
agents; one-on-one instructors; photographers, and similar occupations.
2. All advertising for on-site workspace uses shall clearly state "by appointment only" if the live/work address is used.
3. The residential and the workspace space must be occupied by the same tenant, and no portion of the live/work unit may be rented or sold separately. The live-work unit shall be the primary dwelling of the occupant.
4. The external access for the workspace component shall be oriented to the street and shall have at least one external entrance/exit separate from the living space. The entrance to the workspace component shall be located on the ground level.
5. The workspace use is subject to the same performance standards as the underlying zoning district. Drive-up or drive-in service is not allowed.
6. No explosive, toxic, combustible or flammable materials in excess of what would be allowed incidental to normal residential use shall be stored or used on the premises.

Prohibited Uses in Live-Work Units:

1. Any use not permitted in zoning district where the live-work unit is located;
2. The retail sale of food and/or beverages with customers arriving on-site;
3. Entertainment, drinking, and public eating establishments;
4. Veterinary services, including grooming and boarding, and the breeding or care of animals for hire or for sale;
5. Businesses that involves the use of prescription drugs;
6. Adult-oriented businesses, astrology palmistry, massage, head shops, and similar uses;
7. Sales, repair or maintenance of vehicles, including automobiles, boats, motorcycles, aircraft, trucks, or recreational vehicles;
8. Trade or Private Schools. This excludes private instruction of up to two students at any one time (e.g., music lessons, tutoring).

## ENGINEERING STUDIES

## Traffic Impact Study

TranSystems engineering completed a Traffic Impact Study on behalf of the applicant. The purpose of this study was to assess the impact of the proposed development on the surrounding transportation system. All intersections are projected to operate at an acceptable level of service. No capacity improvements are identified to mitigate the addition of development traffic to the street network.

Traffic engineers from GBA reviewed the Traffic Impact Study on behalf of the City. GBA found the submitted report, its described traffic study and analysis procedures, and ultimately its conclusions and recommendations to be acceptable. The expected traffic impacts from this proposed apartment development will be relatively low. GBA agrees with the final assessment that the surrounding roadway network already has the adequate geometrics and traffic controls needed to serve the additional traffic from this development. GBA noted that in some instances (particularly on evenings and weekends), this proposed residential development will likely create less traffic demand than the former bowling alley and miniature golf course.

When asked about the impact of the live-work units on traffic, GBA advised that they would not
have an impact on overall traffic for the project. If anything, the live-work units will slightly decrease the trip generation, since those residents will not be commuting to an off-site job during peak A.M. and P.M hours. Also, the site plan shows a total of 164 dwelling units, while the Traffic Impact Study considered a slightly higher number of 166 units. GBA notes that this is a conservative approach.

## Stormwater Report

A Stormwater Report was prepared by Uhl Engineering on behalf of the applicant. The report concluded:

- The proposed improvements will reduce the impervious area on site, and consequently the peak runoff from the site will be reduced.
- Stormwater Best Management Practices (BMP) treatment will be incorporated into the proposed site improvements. A level of service of 1.88 is proposed for the site. This is higher than the calculated required level of service of 0 .
- No additional stormwater improvements are necessary as a result of the development.

The report recommends:

- Installation of private storm systems to route stormwater throughout the site.
- Installation of stormwater treatment BMP device to improve site stormwater quality.
- Stormwater detention be waived.

The report adds that off-site improvements will include the installation of a concrete big block wall along the southeast limits of the project site located in the stormwater drainage easement.

GBA engineering reviewed the Stormwater Report on behalf of the City.
Detention: GBA concurs with the waiver of detention requirements, as no additional impervious surfaces are proposed. Issuing a waiver for detention meets drainage criteria for this project as proposed.

BMPs: Permanent BMPs are proposed post-development as required by the City of Mission's National Pollutant Discharge Elimination System (NPDES) permit.

GBA noted that the report proposes an ADS Barracuda S6 in-line treatment unit, which is a hydrodynamic separator. However, the report does not provide design information. Uhl Engineering clarified via phone that a 0.5 inch rainfall produces a 1.76 cfs discharge from the parking lot. According to ADS's technical specifications, an S6 can treat up to approximately 2.5 cfs of peak flow. Therefore, per the manufacturer, the 'first flush' of stormwater can be treated for floatables, total suspended solids, and oil, using this size unit. The applicant will be required to formally document this information in a revised Stormwater Report to be submitted with the Final Development Application.

The revised Stormwater Report submitted with the Final Development Application must formally document final BMP design details, calculations, and precise locations in the Stormwater Report. The list below represents some of the details GBA and the City will be looking for in the final Stormwater Report.

- The report must specify design parameters (other than the level of service) such as the volume of stormwater stored (if any), the size of the proposed BMP, and the treatment capacity provided by each BMP for each targeted contaminant.
- The report must show the size, location, treated area, contaminant removal efficiency, and volume of stormwater treated, including the overflow path for large events not intended for treatment.
- The report must show how the BMPs will be maintained. If catch basin inserts or filter media are used, the report must specify how often will these measures be inspected and/or replaced.
- Plans must show the existing 100-year floodplain. Additionally, the plans must show the floodplain that will result from the Letter of Map Revision (LOMR) that will follow the City's work currently in progress at Rock Creek. The project currently underway will result in revised floodplain limits.
- Report must provide layout and details of the private stormwater infrastructure and discharges to Rock Creek. The private storm sewer system must be shown and tied together so that the number of outlets to the creek are minimized for future maintenance purposes.

City of Mission Public Works noted that a Floodplain Development Permit will be required for the proposed erosion control wall.

## Code Review: Consideration of Site Plans

In accordance with Section 440.160 of the City Code, site plans shall be approved upon determination of the following criteria:

1. The site is capable of accommodating the building(s), parking areas and drives with appropriate open space.

The building, parking area, driveways, and open space have been designed to meet codes and guidelines.
2. The plan provides for safe and easy ingress, egress and internal traffic circulation.

There is adequate space on the site to allow for circulation of residents and the public. The Traffic Impact Study found that all intersections are projected to operate at an acceptable level of service. The surrounding roadway network already has the adequate geometrics and traffic controls needed to serve the community.

The site is near the Mission Transit Center, Rock Creek Trail, and walkable downtown. The Rock Creek Trail accommodates pedestrians and bicycles and is ADA compliant. Pedestrian amenities are included.
3. The plan is consistent with good land planning and site engineering design principles.

The proposed project is in conformance with the Johnson Drive Design Guidelines for building orientation and siting.
4. An appropriate degree of harmony will prevail between the architectural quality of the proposed building(s) and the surrounding neighborhood.

The proposed project is subject to the Design Guidelines for the Johnson Drive corridor, which will ensure architectural harmony as the final site plan is prepared. The overall design of the proposed building emulates the architectural styles found throughout downtown Mission, including horizontal datums, frame-and-infill, mosaic facades, and expressed corners. Additionally, the submitted plans show alignment with the Design Guidelines.
5. The plan represents an overall development pattern that is consistent with the

Comprehensive Plan and other adopted planning policies.
The Comprehensive Plan envisions medium-density attached residential housing, such as apartment dwellings. Additional uses include live-work, offices, and limited retail stores. The Plan envisions a pedestrian-friendly area with Floor Area Ratios of 1.0 to 3.0. The district is intended to serve as a transition zone between low-density residential neighborhoods and areas of higher intensity development.

The proposed project is an apartment building with live-work spaces and a Floor Area Ratio of 1.05. Multi-family housing at this location would serve as a transition zone between the existing single-family residences to the south and higher intensity uses at the Mission Mart and Security Bank to the north. The proposal is in conformance with the intent of the Comprehensive Plan.
6. Right-of-way for any abutting thoroughfare has been dedicated pursuant to the provisions of Chapter 455.

Any required right-of-way changes for this site to accommodate such things as public sidewalks will be addressed with the Final Development Plan application.

## Staff Recommendation

The proposed development conforms with the Comprehensive Plan, meets the overall intent of the "MS2" zoning district, and complies with the required findings for Section 405.090 and 440.160. Therefore, Staff recommends the Planning Commission recommend approval of the Preliminary Site Development Plan for Case \# 20-03 Mission Bowl Apartments to the City Council with the following stipulations:

1. Approval of the requested deviation to height to allow a maximum building height of five stories and/ or 61 feet with the condition that the final development provide a minimum Floor Area Ratio of 1.0.
2. Approval of the requested deviation to density to allow a maximum of 168 apartment units on the 3.45 acre lot.
3. Approval of the requested deviation to allow the primary use of the development to be residential with the condition that the ground floor of the building along Martway Street include accessory uses that activate the streetscape, such as the leasing/ management office, live-work units, and resident amenities. The building shall continue to devote at least seventy-five percent (75\%) of ground floor Martway Street frontage to such uses. The design of the building shall continue to include elements that mimic the pedestrian-friendly experience of a mixed-use development, such as a clear glass "storefront" appearance.
4. Lots 3 and 4 of the Mission Mart Plat must be replatted as one lot. Plat must include easements for the cell tower property, Johnson County Wastewater property, and the Mission Mart parking lot (directly west of the site).
5. Final Development Plan Application shall address all comments from Johnson County, Kansas Wastewater.
6. Final Development Plan Application shall include verification of coordination with the Fire

District.
7. Final Development Plan Application must include site plans, civil plans (including Stormwater Report), landscape plans, photometric plans, and architectural drawings (including building elevation, floor plan and wall section drawings).
8. The Stormwater Report must include BMP design details, calculations, and locations. Plans must show the existing 100-year floodplain and the floodplain that will result from the LOMR that will follow the work currently underway at Rock Creek. Report must provide stormwater infrastructure layout and details. All elements are subject to review and approval by the City.
9. A Floodplain Development Permit and all other associated permits are required prior to construction of the retaining wall. The wall must be designed so that it is uniform with the City's current and planned infrastructure along Rock Creek.
10. No development or construction shall be allowed within the 100-year floodplain with the exception of the retaining wall and associated grading and restoration.
11. Live-work units shall abide by the stipulations:
a. The workspace component of live-work units are intended for use by the following occupations: accountants; architects; artists and artisans; attorneys, computer software and multimedia related professionals; consultants; engineers; fashion, graphic, interior and other designers; hair stylists; home-based office workers, insurance and real estate agents; one-on-one instructors; photographers, and similar occupations.
b. All advertising for on-site workspace uses shall clearly state "by appointment only" if the live/work address is used.
c. The residential and the workspace space must be occupied by the same tenant, and no portion of the live/work unit may be rented or sold separately. The live/work unit shall be the primary dwelling of the occupant.
d. The external access for the workspace component shall be oriented to the street and shall have at least one external entrance/exit separate from the living space. The entrance to the workspace component shall be located on the ground level.
e. The workspace use is subject to the same performance standards as the underlying zoning district. Drive-up or drive-in service is not allowed.
f. No explosive, toxic, combustible or flammable materials in excess of what would be allowed incidental to normal residential use shall be stored or used on the premises.
12. The following is prohibited in live-work units:
a. Any use not permitted in zoning district where the live-work unit is located;
b. The retail sale of food and/or beverages with customers arriving on-site;
c. Entertainment, drinking, and public eating establishments;
d. Veterinary services, including grooming and boarding, and the breeding or care of animals for hire or for sale;
e. Businesses that involves the use of prescription drugs;
f. Adult-oriented businesses, astrology palmistry, massage, head shops, and similar uses;
g. Sales, repair or maintenance of vehicles, including automobiles, boats, motorcycles, aircraft, trucks, or recreational vehicles;
h. Trade or Private Schools. This excludes private instruction of up to two students at any one time (e.g., music lessons, tutoring).

## PLANNING COMMISSION ACTION

The Planning Commission will conduct a public hearing regarding this application at its regularly scheduled meeting on August 24, 2020 at 7:00. Said meeting will be conducted virtually via Zoom in order to adhere to COVID-119 social distancing requirements. All interested parties will be afforded an opportunity to speak at the public hearing. Upon conclusion of the meeting the Planning Commission will take action on the application as it deems appropriate. Such action may include denial, continuance, or recommendation of approval to the City Council.

## CITY COUNCIL ACTION

The City Council will consider the recommendation of the Planning Commission at its regularly scheduled meeting on Wednesday, October 21, 2020.

## PROTEST PETITION

Section 440.140(c) of the Mission Municipal Code provides criteria by which a protest petition may be submitted.

1. A protest against any rezoning or a special use permit application shall be filed in the office of the City Clerk not later than the end of the business day (5:00 P.M.) on the fourteenth (14th) day following the date of the conclusion of the Planning Commission's public hearing held pursuant to the publication notice. In order to be considered a "valid" protest, a protest petition must be timely filed and duly signed and verified by the owners of record of twenty percent (20\%) or more of the property subject to the application or by the owners of record of twenty percent (20\%) of the total area, excepting public streets and ways, required to be notified by Section 440.070. Verification of the genuineness and correctness of the signatures on the protest petition, either individually or collectively, shall be made by the person who has circulated protest petition.
2. The fourteen (14) day period for filing the protest petition shall begin with the day following the conclusion of the public hearing before the Planning Commission and shall end at 5:00 P.M. on the fourteenth (14th) calendar day thereafter. For purposes of calculating the fourteen (14) day period, weekends and holidays shall be counted. Provided however, if the filing deadline falls on a weekend, holiday or other non-business day for City offices, then the filing deadline shall be at 5:00 P.M. on the next regular business day.
3. Once a valid protest petition has been filed with the City, it may not be withdrawn unless every person who has signed the protest signs a verified affidavit which states and fully explains the rights being waived by the withdrawal of the protest petition. Such affidavits of withdrawal must be filed with the City Clerk on or before the last regular business day preceding the City Council meeting for which the protest applies.

# SUNFL WER <br> Development Group 

August 7th, 2020

Brian Scott
6090 Woodson
Mission, KS 66202

## Re: Mission Bowl Redevelopment

Mr. Scott,

It is our pleasure to propose the redevelopment plans for the former Mission Bowl site located at 5399 Martway St. Mission, KS 66205. This letter is a description of the project and outlines our intent to pursue land use and related approvals for the redevelopment of this 3.17 acres. We will approach this development with a team/feedback mentality. Although we understand we cannot implement every idea, we make it a priority to get feedback from the community we are investing and developing in. We hope that the project is something you and the City are excited about and feel as confident as we do that this will be a development that will complement the area while helping ensure the community continues to grow and prosper.

The project entails the construction of a Class A apartment building with rooftop pool. There will be a mix of studios, 1 bedroom and 2 bedroom units, for a total of approximately 164 apartments. The building is 4 stories of wood framed construction on top of a concrete podium structure which is primarily a parking garage and live/work units. There will be a secured parking garage below the apartment buildings and will be accessed on the site. The total parking count will be approximately 197 parking stalls.

Below is a list of the amenities:

- On-site Leasing and Management/Security
- Clubhouse
- Meeting Rooms and Work Stations
- Professionally designed interiors
- Nine and Ten foot ceilings
- Theater Room
- Quartz or granite countertops
- Fitness
- Coffee Bar
- Dog Concierge
- Bike Storage and repair
- Dry Cleaning Concierge.
- Upgraded appliances
- In-unit washers and dryers
- Private patio/balcony (in one and two bedroom units)
- High-end cabinetry package

We believe in creating a community for the community. Our plan of a multi-family specific development is based on feedback and support from local office and retail owners. Instead of adding additional retail and office to compete, we felt the priority should be to encourage the new Mission residents to utilize the existing retail and office space in the area.

## Ways to create community benefits?

We plan to energize and add value to the residents of Mission through a variety of ways, but below are the items we'd like to highlight.

- Dog Park- we plan to program a first class dog park that would allow both residents of the new project and pedestrians utilizing the Rock Creek Trail to use. - Retaining wall- continuation of the improvements that the City has already initiated with the Rock Creek stormwater channel. The Redevelopment Project will include the construction of a concrete wall along the southeast portion of the Project Site adjacent to the creek channel, thereby preventing further erosion, stabilizing the underlying property, and improving the efficiency of the Rock Creek storm channel
- Fitness Park- We would plan on adding a fitness park just off the Rock Creek Trail. Our goal is to encourage an active healthy lifestyle while activating our site to engage and blend into the fantastic community around us.


## Why Mission?

We believe in Mission. The proximity to food, work, trails and family activities make Mission an extremely desirable City for people looking to establish a community to call home. One of the first things we try to understand is the comprehensive plan. We do this to ensure the project will benefit and add value to the hardwork the City and its residents have put into growing their community. We believe that when complete, this project will fit the comprehensive plan by "realizing opportunities to increase building heights, would increase density make properties better utilized, and be aesthetic improvement." We feel this project will help execute the vision that Mission and its residents have for the community.

The project will also provide housing opportunities for individuals of all ages that are seeking maintenance free and secure rental opportunities within a high-density area near shops and restaurants. The development will serve as an anchor on the east-end of the City's downtown corridor, balancing the recently completed multi-family residential building known as "The Locale" on the west end of the corridor. The development will provide nearly 250 additional residents right in the heart of the City's downtown, and serve as a catalyst for energizing the downtown with retail, restaurant, and entertainment amenities that the City desires and that has been envisioned in past master plans for this area including the East Gateway Redevelopment Plan (2007) and the Mission/Rock Creek Master Plan (2006).

This Project Plan fulfills many of the longstanding components of Smart Growth, and mirrors recommendations from the recently-created Climate Action KC, Climate Action Playbook (2019) including:

- Prioritizing infill development to revitalize core areas and reduce adverse impacts on natural resources and infrastructure.
- Live/work units to activate an energy on Martway, while also connecting the Rock Creek trail with the project.
- Prioritizing Transit-Oriented Development (TOD) by supporting development projects near transit hubs or on transit corridors. TODs encourage great use of transit options, and result in less reliability on vehicles, thereby reducing carbon emissions and greenhouse gas. There is an existing bus transit stop across the street from the Project Site.
- Promoting walkability by promoting higher density development within core urbanized or sub-urbanized areas such as downtown corridors. The Redevelopment Project will connect where people live with where they work, play, and relax through sidewalks, streets, and placement of land uses that encourage alternative forms of transportation such as walking and bicycling.

We look forward to working with the neighbors, councilmembers and City staff as we continue through the development process. In the meantime, if there are any questions I can answer, please feel free to give me a call at 785.393 .2102 or email me at bfloodman@sunflowerkc.com.


Banks Floodman

 The proposed building will contain approximately 164 market rater




 Trail.





 unique and vital will create a mutually beneficiai relationshii petween the project and itis context so as to make
the project memorable. This is a build ing that t the city and residents of Nission will be proud to call their own.
The project is seeking minor deviations from Misision zoning regulations. The site is zoned Ns 2 which alows



 tall, and the residential neighborhood to the south, with 2 y.ưnd plane approximately 30 feet
zoning permits 535 units per acre, and a deviation of of 8 units per acre is is poposed for the site.
This mutti-family and live/work project is the highest and best use possible for this site. It will create desity and


 project in the heart of the city. The development ty
to make this exciting and inspiring project a reality.











## DESIGN MEMORANDUM

To: Kaitlyn Service; Brian Scott, CPM (City of Mission)

From: David J. Mennenga, P.E., PTOE (GBA)
Date: July 24, 2020
Subject: Review of Traffic Impact Study and Preliminary Site Plans
Sunflower Development Group apartments complex (5399 Martway Street)

As requested, GBA's traffic engineers have completed a review of the submitted Traffic Impact Study and preliminary site plans for the proposed Sunflower Development Group apartment complex. This development is proposed on the former Mission Bowl and Mini-Golf site located at 5399 Martway Street, generally to the southeast of the intersection of Nall Avenue with Martway Street.

Overall, we find the submitted TIS report, its described traffic study and analysis procedures, and ultimately its conclusions and recommendations to be acceptable. The expected traffic impacts from this proposed apartment development will be relatively low, and we agree with the consultant's final assessment that the surrounding roadway network already has the adequate geometrics and traffic controls needed to serve the additional traffic from this development. We believe it should also be noted that in some instances (particularly on evenings and weekends), this proposed residential development will likely create less traffic demand than the previous land uses on this property.

We offer the following general observations regarding the submitted Traffic Impact Study (TIS) report:

- For trip generation purposes the TIS considered a total of 166 dwelling units, resulting in a negligible increase in estimated development-related trips over the 164 dwelling units indicated on the site plans. This results in a slightly conservative approach to the traffic study analysis.
- The peak hour traffic counts performed by TranSystems in June 2020 at the study intersections were appropriately factored to account for the impacts of COVID-19. Since current traffic volumes are lower than expected due to reduced travel and ongoing work-from-home conditions, the peak hour traffic counts were inflated to account for these impacts. The A.M. peak hour traffic counts were increased by $50 \%$, while the P.M. peak hour counts were increased by $25 \%$. GBA's traffic engineers reviewed the October 2018 traffic counts at the Martway Street/Roeland Drive intersection from the Mission Gateway TIS previously submitted by Olsson Associates, and determined these adjustment factors to be appropriate. It should be noted that reference traffic counts were not provided within the TIS report appendices for any of the study intersections.
- In general, this proposed development is expected to generate just over 900 vehicle-trips per day. The estimated trip generations of 57 total ( 15 inbound, 42 outbound) A.M. trips and 73 total ( 45 inbound, 28 outbound) P.M. trips are actually less than the 100 vehicles per hour (vph) threshold typically used to indicate the need for a traffic study by nationally-accepted ITE standards.
- We concur with the trip distribution pattern and traffic assignment process provided in the TIS report. GBA independently confirmed that the anticipated Mission Gateway development-related traffic volumes have been appropriately assigned through these study intersections. Also, we
agree that the $0.5 \%$ annual traffic growth rate used over the 20-year design horizon to complete the Year 2040 analysis is appropriate for this generally mature and developed area of the City.
- Regarding the existing and anticipated traffic operations at the study intersections, we find two specific items of note:

1. The TIS notes that the expected $95^{\text {th }}$-percentile vehicle queues for the northbound left-turn maneuver at the intersection of Nall Avenue with Johnson Drive is expected to increase from 71 feet in length during the existing P.M. peak hour to 81 feet during the future 2040 P.M. peak hour. We concur with the study conclusion that no geometric modifications are warranted to address this queuing condition, even though these vehicle queues may exceed the available turn bay storage for short durations during future peak conditions. Geometric changes to create additional storage for that movement cannot be made without detrimental impacts on the southbound left-turn storage for the Martway Street intersection due to the close spacing of these adjacent signalized intersections.
2. The completed TIS analysis indicates that all the signalized study intersections will be expected to continue operating at LOS "C" or better during all the future traffic scenarios evaluated. While these results satisfy the City's desired criteria of LOS "D" or better for the overall intersection operations, we noted in the provided appendix of Synchro analyses that several specific side-street movements currently operate at LOS "E" (i.e., with average delays in excess of 55 seconds per vehicle) during both the A.M. and P.M. peak traffic hours, and will continue to do so in the future with average delays up to 70-72 seconds per vehicle.
a. The eastbound through/right-turn movements on Martway Street at Nall Avenue (existing conditions through future 2040 scenario)
b. The eastbound left-turn/right-turn movements on Martway Street at Roeland Drive (existing conditions through future 2040 scenario)
c. The westbound movements from the Mission Gateway parking lot at Martway Street/Roeland Drive (existing + approved conditions through future 2040 scenario)

We offer the following traffic-related observations regarding the provided preliminary site plans:

- The site plan indicates a planned total of 164 dwelling units, which results in a Floor Area Ratio (FAR) of inhabitable building space to property acreage of 1.05 .
- Without explicitly reviewing the City's parking code requirements, the site appears to provide adequate parking within on-site areas (i.e., parking garage, surface lot, and covered parking). 204 parking spaces are provided in excess of the 191 parking spaces required (per the applicant's site plan calculations). We have no specific concerns regarding the on-site circulation patterns within the internal parking areas.
- The alignment of the two proposed access driveways onto Martway Street (i.e., located approximately 600 feet and 1,000 feet east of the signalized Nall Avenue intersection) appears to be appropriate. These access drives are aligned with existing driveways across Martway Street to the north, thereby consolidating vehicle turning movements as much as the proposed development's property limits allow.
- Regarding the proposed site layout, we would only draw the City staff's attention to the proximity of the southeast corner of the surface parking lot to Rock Creek to ensure that proper set-backs are maintained from the adjacent stream channel.


# Mission Bowl Apartments Traffic Impact Study 

## 5399 Martway Street <br> Mission, Kansas




Prepared for:
Mission Bowl Apartments, LLC

Prepared by TranSystems
July 2020

TranSystems
EXPERIENCE | Transportation

## TranSystems

2400 Pershing Road
Suite 400
Kansas City, MO 64108
Tel 816 3298600
Fax 816329 8601
www.transystems.com

July 16, 2020

Mr. Mike Treanor
Mission Bowl Apartments, LLC
P.O. Box 1797

901 New Hampshire, Suite 201
Lawrence, KS 66044

## Re: Mission Bowl Apartments Traffic Impact Study 5399 Martway Street <br> Mission, Kansas

Dear Mr. Treanor:

In response to your request and authorization, TranSystems has completed a traffic impact study for the proposed multi-family residential development located at the site of the former Mission Bowl at 5399 Martway Street in Mission, Kansas. The purpose of this study was to assess the impact of the proposed development on the surrounding transportation system.

Included in this study is a discussion of the anticipated impact of the proposed development on the adjacent street network and identified improvements to mitigate deficiencies for the following scenarios:

- Existing Conditions
- Existing plus Approved Development Conditions
- Existing plus Approved plus Proposed Development Conditions
- Future Year 2040 Conditions

We trust that the enclosed information proves beneficial to you and the City of Mission in this phase of the development process. We appreciate the opportunity to be of service to you and will be available to review this study at your convenience.

Sincerely,
TRANSYSTEMS



EHM:JJW/ehm/PIOI200187
Enclosure

## Introduction

TranSystems has completed a traffic impact study for the proposed Mission Bowl Apartments multi-family residential development located at the site of the former Mission Bowl at 5399 Martway Street in Mission, Kansas. The purpose of this study was to assess the impact of the proposed development on the surrounding transportation system. The location of the development site relative to the major streets in the area is shown on Figure A-I in Appendix A.

This study also contains a description of the proposed development and the surrounding transportation infrastructure along with trip generation estimates, trip distribution estimates, capacity analyses, and a summary of the findings.

## Proposed Development Plan

The Mission Bowl Lofts is a proposed five-story building. There are 166 proposed apartment units. Access to the site will be provided from two existing drives along Martway Street. Site Drive I is located roughly 600 feet east of Nall Avenue and Site Drive 2 is roughly I,000 feet east of Nall Avenue. Both drives provide full-access to the apartment's surface parking lot. The current development plan is included on Figure A2 in Appendix A for reference.

The development site is well positioned to provide access to several modes of transportation. The Mission Transit Center is located just north of the site across Martway Street. Many different RideKC bus routes stop at the Transit Center. The Rock Creek Trail provides a bicycle and pedestrian connection along the south side of Martway Street, adjacent to the site. The proposed development will include bicycle accommodations, such as bike racks and storage, as amenities.

## Study Area

To assess the impacts of the proposed development, the intersections listed below were identified for study during the A.M. and P.M. peak periods.

- Nall Avenue and Johnson Drive
- Nall Avenue and Martway Street
- Roeland Drive and Martway Street
- Site Driveways


## Traffic Counts

The turning-movement traffic volume counts were collected on Thursday, June 18, 2020. The turning movement counts were collected from 7:00-9:00 A.M. and from 4:00-6:00 P.M. In general, the A.M. peak hour was between 7:45-8:45 A.M, and the P.M. peak hour was between 4:30-5:30 P.M.

Turning-movement traffic volume counts were modified to account for the abnormally low traffic volumes due to the COVID-I9 pandemic. Existing traffic volumes were compared to previous counts within the study area. The A.M. peak hour traffic volumes were increased by $50 \%$ and the P.M. peak hour traffic
volumes were increased by $25 \%$ to be similar to the previous counts in the area. The modified existing lane configurations, traffic control devices, and estimated peak hour volumes have been illustrated in Figures A-3 through A-5.

## Surrounding Street Network and Land Uses

The development site is located on the site of the former Mission Bowl building. The site is bounded by Martway Street on the north. There is a surface parking lot utilized by Security Bank directly to the east, and a commercial business building located to the west. The Martway Street corridor is generally lined with commercial businesses and restaurants. South of the fence line, the site is bounded by single-family residences.

Nall Avenue is classified as a minor arterial road by the Kansas Department of Transportation (KDOT). North of Shawnee Mission Parkway, the 60 -foot roadway is three-lanes. Additional left- and right-turn lanes are added at major intersections. There is curb and gutter, along with a sidewalk on the west side of the street. The posted speed limit is 30 mph . The intersections with Johnson Drive and Martway Street are signalized.

Johnson Drive is classified by KDOT as a minor arterial road. West of Nall Avenue, Johnson Drive is an undivided, four-lane roadway. To the east, it is a three-lane street with a two-way center left-turn lane. There is curb and gutter. Sidewalk runs along both sides of the street, and there is some offset, diagonal street parking. The posted speed limit is 30 mph .

Adjacent to the site, Martway Street is a 36 -foot, three-lane local street with a two-way center left-turn lane. It has curbs and gutters. The Rock Creek Trail runs parallel with the proposed site, but there is no sidewalk on the north side of the street. Roeland Drive has similar characteristics. The posted speed limit on both of these roadways is 25 mph . The intersection of Martway Street and Roeland Drive is signalized.

## Approved Development

The latest Mission Gateway development plan was approved in February 2020. This development is located east of the proposed Mission Bowl development and is currently under construction. Mission Gateway includes both commercial, residential, office, and entertainment land uses. Since this approved development will add traffic to the study intersections when completed, the development trips from Mission Gateway are included in the analysis for the study development scenarios. The location of this project is included on the location map on Figure A-I in Appendix A.

## Analysis

The scope of analysis for the assessment of the proposed development's impact on the surrounding transportation system is based in large part on the recommended practices of the Institute of Transportation Engineers (ITE), as outlined in their Traffic Engineering Handbook. ITE is a nationallyrecognized organization of transportation professionals with members from both private and public sectors. The analysis of the proposed development's impact included development of trip generation and trip distribution estimates as well as a traffic operations assessment for each study scenario.

## Trip Generation

Trip generation estimates were prepared using the Institute of Transportation Engineer's Trip Generation, IOth Edition. Table I shows the expected trips to be generated by the proposed development. Additional information related to trip generation is included in Appendix B.

| Table IProposed Development Trip Generation |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Land Use | Intensity | ITE Code | Average Weekday | A.M. Peak Hour |  |  | P.M. Peak Hour |  |  |
|  |  |  |  | Total | In | Out | Total | In | Out |
| Multi-Family Housing (Mid-Rise) | 166 units | 221 | 903 | 57 | 15 | 42 | 73 | 45 | 28 |
| Total New Development Trips |  |  | 903 | 57 | 15 | 42 | 73 | 45 | 28 |

## Trip Distribution

The estimated trips generated by the proposed development were distributed onto the surrounding street network based on the trip distributions summarized in Table 2. These distributions are based on traffic counts, the expected service area of the development and engineering judgment.

| Trip Distribution |  |
| :--- | :---: |
| Direction To/From | Percentage |
| North on Roeland Drive | $15 \%$ |
| South on Roeland Drive | $30 \%$ |
| West on Johnson Drive | $15 \%$ |
| West on Martway Street | $10 \%$ |
| South on Nall Avenue | $30 \%$ |
| Total | $\mathbf{1 0 0 \%}$ |

## Traffic Operation Assessment

An assessment of traffic operations was made for the scenarios listed below.

- Existing Conditions
- Existing plus Approved Development Conditions
- Existing plus Approved plus Proposed Development Conditions
- Future Year (2040)

The study intersections were evaluated using the Synchro traffic analysis software package. Calculations were performed based on the methodologies outlined in the Highway Capacity Manual (HCM), 6th Edition, which is published by the Transportation Research Board. The operating conditions at an intersection are graded by the "level of service" experienced by drivers. Level of service (LOS) describes
the quality of traffic operating conditions and is rated from " A " to " F ". LOS A represents the least congested condition with free-flow movement of traffic and minimal delays. LOS F generally indicates severely congested conditions with excessive delays to motorists. Intermediate grades of B, C, D, and E reflect incremental increases in the average delay per stopped vehicle. Delay is measured in seconds per vehicle. Table 3 shows the upper limit of delay associated with each level of service for signalized and unsignalized intersections.

| Table 3 <br> Intersection Level <br> of Service Delay Thresholds <br> Level of Service <br> (LOS) <br> Signalized |  |  |
| :---: | :---: | :---: |
| A | $\leq 10$ Seconds | $\leq 10$ Seconds |
| B | $\leq 20$ Seconds | $\leq 15$ Seconds |
| C | $\leq 35$ Seconds | $\leq 25$ Seconds |
| D | $\leq 55$ Seconds | $\leq 35$ Seconds |
| E | $\leq 80$ Seconds | $\leq 50$ Seconds |
| F | $>80$ Seconds | $>50$ Seconds |

While LOS measurements apply to both signalized and unsignalized intersections, there are significant differences between how these intersections operate and how they are evaluated. LOS for signalized intersections reflects the operation of the intersection as a whole.

Unsignalized intersections, in contrast, are evaluated based on the movement groupings which are required to yield to other traffic. Typically, these are the left turns off of the major street and the sidestreet approaches for two-way stop-controlled intersections. At unsignalized intersections lower LOS ratings ( $\mathrm{D}, \mathrm{E}$ and F ) do not, in themselves, indicate the need for additional improvements. Many times there are convenient alternative routes to avoid the longer delays. Other times the volumes on the unsignalized approaches are relatively minor when compared to the major street traffic, and improvements such as a traffic signal installation may increase the average delay to all users of the intersection.

The decision to install a traffic signal, which is often considered when lower LOS ratings are projected, should be based on engineering studies and the warrants for traffic signal installation as outlined in the Federal Highway Administration's Manual on Uniform Traffic Control Devices (MUTCD). Signals are typically not recommended in locations where there are convenient alternative paths, or if the installation of a traffic signal would have negative impacts on the surrounding transportation system.

The LOS rating deemed acceptable varies by community, facility type and traffic control device. Most communities in the region, such as the City of Mission, have identified LOS D as the minimum desirable goal for signalized intersections. However, at unsignalized intersections LOS D, E, or even F are often considered acceptable for low to moderate traffic volumes where the installation of a traffic signal is not warranted by the conditions at the intersection, or the location has been deemed undesirable for signalization.

Traffic queues were also evaluated as part of the analyses. Long traffic queues which extend beyond the amount of storage available, either between intersections or within turn lanes, can have significant impacts on operations. The projected vehicular queues were analyzed to ensure the analyses are reflective of the physical constraints of the study intersections and to identify if additional storage is needed for turn lanes.

## Existing Conditions

The results of the existing conditions intersection analyses are summarized in Table 4. The study intersections were evaluated with the lane configurations, traffic volumes, and traffic control devices shown on Figures A-3 through A-5. The Synchro output files are included in Appendix C.

| Table 4 Intersection Operational Analysis Existing Conditions |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Intersection | A.M. Peak Hour |  | P.M. Peak Hour |  |
| Movement | LOS ${ }^{1}$ | Delay ${ }^{2}$ | LOS ${ }^{1}$ | Delay ${ }^{2}$ |
| Nall Avenue and Johnson Drive Traffic Signal | C | 33.0 | C | 32.3 |
| Nall Avenue and Martway Street Traffic Signal | B | 18.7 | C | 22.4 |
| Site Drive I and Martway Street <br> Northbound <br> Southbound <br> Eastbound Left-Turn <br> Westbound Left-Turn | $\begin{aligned} & A \\ & A \\ & A \\ & A \end{aligned}$ | $\begin{aligned} & 9.9 \\ & 9.1 \\ & 7.4 \\ & 0.0 \end{aligned}$ | $\begin{aligned} & B \\ & A \\ & A \\ & A \end{aligned}$ | $\begin{gathered} 11.5 \\ 9.8 \\ 7.5 \\ 0.0 \end{gathered}$ |
| Site Drive 2 and Martway Street <br> Northbound <br> Southbound <br> Eastbound Left-Turn <br> Westbound Left-Turn | $\begin{aligned} & A \\ & A \\ & A \\ & A \end{aligned}$ | $\begin{aligned} & 0.0 \\ & 9.5 \\ & 7.4 \\ & 0.0 \end{aligned}$ | $\begin{aligned} & B \\ & A \\ & A \\ & A \end{aligned}$ | $\begin{gathered} 10.4 \\ 9.8 \\ 7.5 \\ 7.5 \end{gathered}$ |
| Roeland Drive and Martway Street <br> Traffic Signal | B | 12.6 | C | 24.8 |

The results in Table 4 indicate that all study intersections currently operate at acceptable levels of service during the peak hours. During the P.M. peak hour, the northbound left-turn 95th percentile queue length at Johnson Drive and Nall Avenue is 71 feet. The short, 70 foot, turn bay is limited due to the short spacing between the signalized intersections. Lengthening this turn bay would reduce the 50 foot southbound left-turn lane at Martway Street and Nall Avenue. All other queues are contained within their designated lanes.

## Existing plus Approved Development Conditions

The development trips generated by each approved development in the vicinity of the site were compiled to determine the effect of traffic from the approved but yet unbuilt Mission Gateway development. The lane configurations at the intersection of Martway Street and Roeland Drive were updated to reflect the proposed configurations from the approved study. The results of the Existing plus Approved Development
conditions intersection analyses are summarized in Table 5. The study intersections were evaluated with the lane configurations, traffic volumes, and traffic control devices shown on Figures A-6 through A-8. The Synchro output files are included in Appendix C.


The results in Table 5 indicate that all study intersections are projected to operate at acceptable levels of service during the peak hours. During the P.M. peak hour, the northbound left-turn 95th percentile queue length at Johnson Drive and Nall Avenue is projected to be 72 feet. There is a nominal impact to the study intersections after the approved development traffic is added.

## Existing plus Approved plus Proposed Development Conditions

The results of the Existing plus Approved plus Proposed Development conditions intersection analyses are summarized on the following page in Table 6. Traffic volumes projected at the site driveways are low. As such, no left- or right-turn lanes are warranted at their of the site driveway locations. The study intersections were evaluated with the lane configurations, traffic volumes, and traffic control devices shown on Figures A-9 through A-I I. The Synchro output files are included in Appendix C.

The results in Table 6 indicate that all study intersections are projected to operate at acceptable levels of service during the peak hours. The northbound left-turn 95th percentile queue length at Johnson Drive and Nall Avenue is projected to extend 74 feet during the P.M. peak hour. All queues are projected to be contained within their designated lane.

| Table 6 <br> Intersection Operational Analysis <br> Existing plus Approved plus Proposed Development Conditions |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Intersection | A.M. Peak Hour |  | P.M. Peak Hour |  |
| Movement | LOS ${ }^{1}$ | Delay ${ }^{2}$ | LOS' | Delay ${ }^{2}$ |
| Nall Avenue and Johnson Drive |  |  |  |  |
| Traffic Signal | C | 32.9 | C | 32.4 |
| Nall Avenue and Martway Street |  |  |  |  |
| Traffic Signal | B | 19.8 | C | 23.0 |
| Site Drive I and Martway Street |  |  |  |  |
| Northbound | B | 10.2 | B | 11.4 |
| Southbound | A | 9.2 | B | 10.0 |
| Eastbound Left-Turn | A | 7.4 | A | 7.5 |
| Westbound Left-Turn | A | 7.5 | A | 7.6 |
| Site Drive 2 and Martway Street |  |  |  |  |
| Northbound | A | 9.4 | B | 10.1 |
| Southbound | A | 9.6 | B | 10.2 |
| Eastbound Left-Turn | A | 7.4 | A | 7.5 |
| Westbound Left-Turn | A | 7.4 | A | 7.6 |
| Roeland Drive and Martway Street |  |  |  |  |
| Traffic Signal | c | 21.6 | C | 26.9 |

## Future Year (2040) Conditions

This scenario provides an estimate of future traffic conditions in year 2040 by considering the addition of background traffic growth to the Existing plus Approved plus Proposed Development traffic volumes. To estimate future background traffic growth, the existing traffic volumes at the study intersections were assumed to increase at a rate of $0.5 \%$ per year. This modest growth rate is consistent with a mature developed area.

The results of the Future Year (2040) Conditions intersection analyses are summarized in Table 7. The study intersections were evaluated with the lane configurations, traffic volumes, and traffic control devices shown on Figures A-I2 through A-I4. The Synchro output files are included in Appendix C.

| Table 7 <br> Intersection Operational Analysis Future Year 2040 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Intersection | Movement | A.M. Peak Hour |  | P.M. Peak Hour |  |
|  |  | LOS ${ }^{1}$ | Delay ${ }^{2}$ | LOS ${ }^{1}$ | Delay ${ }^{2}$ |
| Nall Avenue and Johnson Drive | Traffic Signal | C | 32.6 | C | 32.8 |
| Nall Avenue and Martway Street | Traffic Signal | B | 17.8 | C | 23.3 |



The results in Table 7 indicate that all study intersections are projected to operate at acceptable levels of service during the peak hours. The northbound left-turn 95th percentile queue length at Johnson Drive and Nall Avenue is projected to be 81 feet during the P.M. peak hour, which extends slightly past the existing turn bay length.

## Summary

TranSystems has completed a traffic impact study for the proposed Mission Bowl Apartments multi-family residential development located at the site of the former Mission Bowl at 5399 Martway Street in Mission, Kansas. The purpose of this study was to assess the impact of the proposed development on the surrounding transportation system.

The proposed development is projected to generate 57 new trips during the A.M. peak hour and 73 new trips during the P.M. peak hour. The apartments will be accessed from two existing site driveways along Martway Street, roughly 600 feet and I,000 feet east of Nall Avenue.

No capacity improvements are identified to mitigate the addition of development traffic to the street network. All intersections are projected to operate at an acceptable level of service. Due to the short spacing between the signalized intersections, the northbound left-turn lane 95th percentile queue length is projected to extend slightly past the existing turn bay length during the P.M. peak hour at the intersection of Nall Aveue and Johnson Drive. However, lengthening this turn bay would shorten the southbound left-turn bay at Nall Avenue and Martway Street.

## Appendix A - Figures

Figure A-I Location Map
Figure A-2 Site Plan
Figure A-3 Existing Lane Configurations and Traffic Controls
Figure A-4 Existing A.M. Peak Hour Traffic Volumes
Figure A-5 Existing P.M. Peak Hour Traffic Volumes
Figure A-6 Existing plus Approved Development Lane Configurations and Traffic Controls
Figure A-7 Existing plus Approved Development A.M. Peak Hour Traffic Volumes
Figure A-8 Existing plus Approved Development P.M. Peak Hour Traffic Volumes
Figure A-9 Existing plus Approved plus Proposed Development Lane Configurations and Traffic Controls
Figure A-IO Existing plus Approved plus Proposed Development A.M. Peak Hour Traffic Volumes
Figure A-II Existing plus Approved plus Proposed Development P.M. Peak Hour Traffic Volumes
Figure A-I2 Future Year (2040) Lane Configurations and Traffic Controls
Figure A-I3 Future Year (2040) A.M. Peak Hour Traffic Volumes
Figure A-I4 Future Year (2040) P.M. Peak Hour Traffic Volumes











Legend


Legend



## Appendix B - Trip Generation and Distribution

See attached worksheets.
Mission Bowl Lofts TIS
Mission, Kansas
Trip Generation


## Mission Bowl Lofts TIS

Existing Conditions
A.M. Peak Hour




$$
\hat{m} \rightleftharpoons \infty
$$


Mission Bowl Lofts TIS
Mission, Kansas
Existing Conditions
P.M. Peak Hour


ゥ $\begin{gathered}\text { g } \\ \infty\end{gathered}$

玉 $\underset{\sim}{\text { T }}$


$\stackrel{\ddagger}{\rightleftharpoons} \stackrel{\text { N }}{\rightleftharpoons}$


웅 경
ํㅜ 욷


프 ~
Mission Bowl Lofts TIS
Existing Conditions
A.M. Peak Hour

ㅂ \& \&



## Mission Bowl Lofts TIS <br> Mission，Kansas <br> InoH Yeəd＇W＇d suolu！puos бu！ps！x


ذ ：® N
꾼 꾼

の $\stackrel{\text { ๙ }}{\sim}$

き き き


Mission Bowl Lofts TIS
Existing＋Approved Conditions
A．M．Peak Hour


ㅂ ロ $\varnothing /$
$\because$ ํㅜㄷ


จ $\stackrel{\infty}{\sim}$ ゅ

$\because \stackrel{\circ}{\circ}$


尔呂学
is $\stackrel{\varnothing}{\underset{\sim}{F}}$


쿡 ํㅜㄷ
Existing + Approved Conditions



뀬


$\therefore \stackrel{\circ}{~}$ ํ



흥 స

$\stackrel{\circ}{\square} \stackrel{\circ}{\infty} \stackrel{\circ}{\square}$







ㄷ セ พ






๙゙ッ 品


ธ \％\％
$\because \approx$


ค ลั

$\mathscr{\leftrightarrow} \pm \stackrel{\circ}{\square}$

ก คั ฉ

® 욛

えN゙さ

き 「 ®
Mission Bowl Lofts TIS
Existing + Approved + Development Conditions

ゅ $\stackrel{\circ}{\mathrm{N}} \stackrel{\curvearrowleft}{\sim}$
N N N N Nㅜㄴ

울 훙
꿀




ค $\stackrel{\circ}{\mathrm{N}}$－
$\stackrel{\circ}{\sim}$－


$\underset{\sim}{+}$
$\mathbb{N}$ sion Bowl Lofts
Mission，Kansas
Mission Bowl Lofts TIS


|  | N N |  |  | $\nu$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\stackrel{\rightharpoonup}{ \pm}$ |  |  |  |  |  |  |
|  | $火 \downarrow$ リ |  |  |  |  |  |  |
|  | ルト｜｜К |  |  |  |  |  |  |
| 6l $8 \leftarrow-+---+-\leftarrow 8$ てl |  |  |  |  |  |  |  |
|  | $\kappa \quad\|\quad\| \quad k$ |  |  |  |  |  |  |
| 97 ｜｜9z |  |  |  |  |  |  |  |
|  | ャ｜｜Уレレ |  |  |  |  |  |  |
| $L$ | $\varepsilon \rightarrow-+---+\rightarrow \varepsilon \quad$ tl |  |  |  |  |  |  |
|  | $\pm \mid$｜ |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |


$\cdots \quad \bar{\infty} \infty$

$$
\text { N } \bar{\infty} \quad \infty
$$

әлヲ IIEN pue uosuyor




 Martway St and Nall Ave
N $\quad \circ \quad \infty$


수 끈

구

Martway St and Site Drive 2

$\stackrel{\sim}{\circ} \stackrel{ }{\circ}$

$\div$ O N
$\div$ ㅇ

Johnson Dr and Nall Ave



$\infty \quad \boldsymbol{N}$




$\wedge={ }^{\prime}$

## Mission Bowl Lofts TIS <br> Mission，Kansas <br> Trip Distribution punoqui都


令
縎


웅 웅
กํ คั
윤응융
Johnson Dr and Nall Ave
ํํ
ә＾＊IIEN pue 7 S Кемдер

ำ ำ
웅ํ

## Mission Bowl Lofts TIS <br> Mission, Kansas <br> Trip Distribution <br> punoqłno uolznquas!a d!a」

숭 융
î in in in
융
i̊ i̊ in

# $\%$ S 

 $\% G \downarrow k$

 웅
 \% $\mathfrak{G}$



ธ ๙ \％
® 응 \＆

© ！은
$\odot$ ®．


あ $\underset{\text { ส }}{\text { ® }}$
® ํㅜㄴ


骂 呙 号

Mission Bowl Lofts TIS
Mission，Kansas
Future + Development Conditions
P．M．Peak Hour

8 욹
욷 용

$\stackrel{\infty}{\stackrel{\text { ® }}{\sim}}$ ：
추 ํ


婴 品 范

Mission Bowl Lofts TIS Mission, Kansas

Future Grown 2040 Volumes A.M. Peak Hour

$\bar{\circ} \stackrel{\infty}{\stackrel{\circ}{\sim}}$


名
¢ ํㅜㄴ ํㅡㄷ


〒 ® ल ल్


Mission Bowl Lofts TIS Mission, Kansas

Future Grown 2040 Volumes P.M. Peak Hour

$\therefore$ 쓰 쓷
$\stackrel{\text { m }}{\sim}$ ※े


응
$\stackrel{\circ}{\circ}{ }_{\sim}^{\infty}$ ल


ค $\stackrel{n}{\sim} \stackrel{\infty}{\sim}$

Mission Bowl Lofts TIS
Mission, Kansas
Approved + Development Trips
A.M. Peak Hour

$\pm \stackrel{\sim}{\sim}$



$$
\underset{\sim}{\sim} \quad \bar{\infty}
$$



Mission Bowl Lofts TIS
Mission, Kansas
Approved + Development Trips
P.M. Peak Hour


$\because$ g



## Appendix C - Capacity Analysis Reports

See attached worksheets.

|  | 4 | $\rightarrow$ | $\rangle$ | 7 |  | 4 | $\uparrow$ | 7 |  | $\dagger$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Group | EBL | EBT | EBR | WBL | WBT | NBL | NBT | NBR | SBL | SBT |
| Lane Group Flow (vph) | 44 | 263 | 138 | 52 | 276 | 112 | 99 | 65 | 26 | 223 |
| v/c Ratio | 0.22 | 0.73 | 0.33 | 0.24 | 0.74 | 0.16 | 0.09 | 0.07 | 0.03 | 0.23 |
| Control Delay | 30.2 | 57.0 | 8.1 | 30.6 | 55.9 | 9.4 | 11.9 | 0.8 | 11.1 | 17.2 |
| Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Total Delay | 30.2 | 57.0 | 8.1 | 30.6 | 55.9 | 9.4 | 11.9 | 0.8 | 11.1 | 17.2 |
| Queue Length 50th (ft) | 25 | 194 | 0 | 29 | 202 | 28 | 26 | 1 | 7 | 84 |
| Queue Length 95th (ft) | 47 | 263 | 50 | 53 | 269 | 49 | 45 | 1 | 23 | 167 |
| Internal Link Dist (ft) |  | 202 |  |  | 232 |  | 200 |  |  | 299 |
| Turn Bay Length (ft) | 115 |  | 230 | 200 |  | 70 |  | 100 | 50 |  |
| Base Capacity (vph) | 207 | 628 | 625 | 234 | 656 | 741 | 1098 | 972 | 802 | 966 |
| Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Reduced v/c Ratio | 0.21 | 0.42 | 0.22 | 0.22 | 0.42 | 0.15 | 0.09 | 0.07 | 0.03 | 0.23 |

[^1]|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |


|  | 4 | $\longrightarrow$ | 7 |  | 4 | $\dagger$ |  | $\downarrow$ | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Group | EBL | EBT | WBL | WBT | NBL | NBT | SBL | SBT | SBR |
| Lane Group Flow (vph) | 32 | 102 | 23 | 40 | 67 | 280 | 32 | 260 | 69 |
| v/c Ratio | 0.17 | 0.57 | 0.14 | 0.27 | 0.08 | 0.11 | 0.04 | 0.20 | 0.06 |
| Control Delay | 42.5 | 41.4 | 41.8 | 37.6 | 4.6 | 6.3 | 5.1 | 7.3 | 1.5 |
| Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | 0.0 |
| Total Delay | 42.5 | 41.4 | 41.8 | 37.6 | 4.6 | 6.3 | 5.1 | 7.8 | 1.5 |
| Queue Length 50th (ft) | 21 | 41 | 16 | 18 | 11 | 34 | 4 | 42 | 1 |
| Queue Length 95th (ft) | 47 | 95 | 37 | 51 | 29 | 62 | 18 | 111 | 0 |
| Internal Link Dist (ft) |  | 57 |  | 294 |  | 318 |  | 200 |  |
| Turn Bay Length (ft) | 130 |  | 130 |  | 90 |  | 50 |  |  |
| Base Capacity (vph) | 216 | 442 | 197 | 427 | 911 | 2526 | 888 | 1319 | 1149 |
| Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 685 | 0 |
| Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Reduced v/c Ratio | 0.15 | 0.23 | 0.12 | 0.09 | 0.07 | 0.11 | 0.04 | 0.41 | 0.06 |

[^2]|  | $\rangle$ |  |  | 7 |  |  | 4 | 4 | 7 |  | $\downarrow$ | $\downarrow$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | \% | F |  | \% | $\hat{\beta}$ |  | \% | 个t |  | \% | $\uparrow$ | 7 |
| Traffic Volume (veh/h) | 29 | 41 | 50 | 21 | 21 | 15 | 60 | 210 | 42 | 29 | 234 | 62 |
| Future Volume (veh/h) | 29 | 41 | 50 | 21 | 21 | 15 | 60 | 210 | 42 | 29 | 234 | 62 |
| Initial $Q(Q b)$, veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Ped-Bike Adj(A_pbT) | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 |
| Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Work Zone On Approach |  | No |  |  | No |  |  | No |  |  | No |  |
| Adj Sat Flow, veh/h/ln | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 |
| Adj Flow Rate, veh/h | 32 | 46 | 56 | 23 | 23 | 17 | 67 | 233 | 47 | 32 | 260 | 69 |
| Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
| Percent Heavy Veh, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Cap, veh/h | 180 | 61 | 74 | 126 | 74 | 55 | 790 | 2132 | 423 | 875 | 1330 | 1127 |
| Arrive On Green | 0.03 | 0.08 | 0.08 | 0.02 | 0.07 | 0.07 | 0.04 | 0.72 | 0.72 | 0.02 | 0.48 | 0.48 |
| Sat Flow, veh/h | 1781 | 768 | 935 | 1781 | 999 | 738 | 1781 | 2956 | 586 | 1781 | 1870 | 1585 |
| Grp Volume(v), veh/h | 32 | 0 | 102 | 23 | 0 | 40 | 67 | 138 | 142 | 32 | 260 | 69 |
| Grp Sat Flow(s),veh/h/ln | 1781 | 0 | 1702 | 1781 | 0 | 1737 | 1781 | 1777 | 1765 | 1781 | 1870 | 1585 |
| Q Serve(g_s), s | 2.0 | 0.0 | 7.0 | 1.4 | 0.0 | 2.6 | 1.2 | 2.8 | 2.9 | 0.6 | 9.6 | 2.8 |
| Cycle Q Clear(g_c), s | 2.0 | 0.0 | 7.0 | 1.4 | 0.0 | 2.6 | 1.2 | 2.8 | 2.9 | 0.6 | 9.6 | 2.8 |
| Prop In Lane | 1.00 |  | 0.55 | 1.00 |  | 0.43 | 1.00 |  | 0.33 | 1.00 |  | 1.00 |
| Lane Grp Cap (c), veh/h | 180 | 0 | 135 | 126 | 0 | 129 | 790 | 1281 | 1273 | 875 | 1330 | 1127 |
| V/C Ratio(X) | 0.18 | 0.00 | 0.76 | 0.18 | 0.00 | 0.31 | 0.08 | 0.11 | 0.11 | 0.04 | 0.20 | 0.06 |
| Avail Cap(c_a), veh/h | 273 | 0 | 404 | 227 | 0 | 413 | 909 | 1281 | 1273 | 967 | 1330 | 1127 |
| HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.67 | 0.67 | 0.67 |
| Upstream Filter(l) | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.97 | 0.97 | 0.97 |
| Uniform Delay (d), s/veh | 49.4 | 0.0 | 54.1 | 49.8 | 0.0 | 52.6 | 4.4 | 5.1 | 5.1 | 4.2 | 11.6 | 9.8 |
| Incr Delay (d2), s/veh | 0.5 | 0.0 | 8.4 | 0.7 | 0.0 | 1.4 | 0.0 | 0.2 | 0.2 | 0.0 | 0.3 | 0.1 |
| Initial Q Delay(d3),s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| \%ile BackOfQ(50\%),veh/ln | 0.9 | 0.0 | 3.4 | 0.7 | 0.0 | 1.2 | 0.4 | 1.0 | 1.0 | 0.2 | 4.4 | 1.0 |
| Unsig. Movement Delay, s/veh |  |  |  |  |  |  |  |  |  |  |  |  |
| LnGrp Delay (d),s/veh | 49.8 | 0.0 | 62.5 | 50.5 | 0.0 | 54.0 | 4.4 | 5.2 | 5.2 | 4.2 | 11.9 | 9.9 |
| LnGrp LOS | D | A | E | D | A | D | A | A | A | A | B | A |
| Approach Vol, veh/h |  | 134 |  |  | 63 |  |  | 347 |  |  | 361 |  |
| Approach Delay, s/veh |  | 59.5 |  |  | 52.7 |  |  | 5.1 |  |  | 10.8 |  |
| Approach LOS |  | E |  |  | D |  |  | A |  |  | B |  |
| Timer - Assigned Phs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |  |  |  |
| Phs Duration ( $\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$ ), $s$ | 7.8 | 91.0 | 7.2 | 14.0 | 9.0 | 89.9 | 7.8 | 13.4 |  |  |  |  |
| Change Period ( $Y+R \mathrm{c}$ ), s | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 |  |  |  |  |
| Max Green Setting (Gmax), s | 9.5 | 54.5 | 9.5 | 28.5 | 12.5 | 51.5 | 9.5 | 28.5 |  |  |  |  |
| Max Q Clear Time (g_c+11), s | 2.6 | 4.9 | 3.4 | 9.0 | 3.2 | 11.6 | 4.0 | 4.6 |  |  |  |  |
| Green Ext Time (p_c), s | 0.0 | 1.8 | 0.0 | 0.5 | 0.1 | 1.9 | 0.0 | 0.1 |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| HCM 6th Ctrr DelayHCM 6th LOS |  |  | 18.7 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |




| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 1 |  |  |  |  |  |  |  |  |  |  |  |  |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |  |
| Lane Configurations | ${ }^{*}$ | $\uparrow$ |  | ${ }^{1}$ | $\uparrow$ |  |  | \& |  |  | \& |  |  |
| Traffic Vol, veh/h | 11 | 69 | 1 | 0 | 47 | 9 | 0 | 0 | 0 | 2 | 2 | 2 |  |
| Future Vol, veh/h | 11 | 69 | 1 | 0 | 47 | 9 | 0 | 0 | 0 | 2 | 2 | 2 |  |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| Sign Control | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |  |
| RT Channelized | - | - | None |  |
| Storage Length | 0 | - | - | 0 | - | - | - | - | - | - | - | - |  |
| Veh in Median Storage, \# | \# | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |  |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |  |
| Peak Hour Factor | 81 | 81 | 81 | 81 | 81 | 81 | 81 | 81 | 81 | 81 | 81 | 81 |  |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |  |
| Mvmt Flow | 14 | 85 | 1 | 0 | 58 | 11 | 0 | 0 | 0 | 2 | 2 | 2 |  |



5: Roeland Dr \& Martway St

|  | $\rangle$ |  | 4 | $\dagger$ | $\downarrow$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Group | EBL | EBR | NBL | NBT | SBT |
| Lane Group Flow (vph) | 27 | 17 | 34 | 53 | 110 |
| v/c Ratio | 0.25 | 0.15 | 0.03 | 0.03 | 0.07 |
| Control Delay | 56.7 | 24.2 | 1.3 | 1.2 | 2.6 |
| Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Total Delay | 56.7 | 24.2 | 1.3 | 1.2 | 2.6 |
| Queue Length 50th (ft) | 20 | 0 | 2 | 4 | 14 |
| Queue Length 95th (ft) | 51 | 23 | 7 | 10 | 30 |
| Internal Link Dist (ft) | 534 |  |  | 370 | 274 |
| Turn Bay Length (ft) | 115 |  | 115 |  |  |
| Base Capacity (vph) | 464 | 428 | 1186 | 1701 | 1561 |
| Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 |
| Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 |
| Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 |
| Reduced v/c Ratio | 0.06 | 0.04 | 0.03 | 0.03 | 0.07 |
| Intersection Summary |  |  |  |  |  |



1: Nall Ave \& Johnson Dr

|  | $\stackrel{ }{*}$ | $\rightarrow$ | $\downarrow$ | $\downarrow$ | 4 | 4 | $\uparrow$ | \% |  | $\downarrow$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Group | EBL | EBT | EBR | WBL | WBT | NBL | NBT | NBR | SBL | SBT |
| Lane Group Flow (vph) | 52 | 397 | 128 | 98 | 545 | 128 | 157 | 74 | 42 | 208 |
| $\mathrm{v} / \mathrm{C}$ Ratio | 0.27 | 0.63 | 0.20 | 0.34 | 0.82 | 0.25 | 0.20 | 0.10 | 0.08 | 0.31 |
| Control Delay | 20.0 | 36.4 | 3.8 | 21.2 | 44.5 | 17.0 | 22.0 | 1.2 | 20.7 | 30.6 |
| Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4 | 0.0 | 0.0 | 0.0 |
| Total Delay | 20.0 | 36.4 | 3.8 | 21.2 | 44.5 | 17.0 | 22.5 | 1.2 | 20.7 | 30.6 |
| Queue Length 50th ( t ) | 22 | 249 | 0 | 43 | 379 | 43 | 55 | 1 | 17 | 110 |
| Queue Length 95th (ft) | 39 | 306 | 32 | 64 | 454 | 71 | 130 | 5 | 44 | 205 |
| Internal Link Dist (ft) |  | 527 |  |  | 232 |  | 200 |  |  | 299 |
| Turn Bay Length (ft) | 115 |  | 230 | 200 |  | 70 |  | 100 | 50 |  |
| Base Capacity (vph) | 195 | 858 | 802 | 290 | 857 | 533 | 769 | 709 | 553 | 670 |
| Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 311 | 0 | 0 | 0 |
| Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Reduced v/c Ratio | 0.27 | 0.46 | 0.16 | 0.34 | 0.64 | 0.24 | 0.34 | 0.10 | 0.08 | 0.31 |

[^3]|  | $\rangle$ |  |  | 7 |  |  | 4 | 4 | $p$ |  | $\downarrow$ | $\downarrow$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | ${ }_{1}$ | 4 | 「 | ${ }^{4}$ | $\uparrow$ |  | \% | 4 | 「 | ${ }^{*}$ | $\uparrow$ |  |
| Traffic Volume (veh/h) | 48 | 365 | 118 | 90 | 481 | 20 | 118 | 144 | 68 | 39 | 145 | 46 |
| Future Volume (veh/h) | 48 | 365 | 118 | 90 | 481 | 20 | 118 | 144 | 68 | 39 | 145 | 46 |
| Initial $Q(Q b)$, veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Ped-Bike Adj(A_pbT) | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 |
| Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Work Zone On Approach |  | No |  |  | No |  |  | No |  |  | No |  |
| Adj Sat Flow, veh/h/ln | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 |
| Adj Flow Rate, veh/h | 52 | 397 | 128 | 98 | 523 | 22 | 128 | 157 | 74 | 42 | 158 | 50 |
| Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Percent Heavy Veh, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Cap, veh/h | 162 | 579 | 491 | 261 | 583 | 25 | 580 | 855 | 724 | 612 | 588 | 186 |
| Arrive On Green | 0.03 | 0.31 | 0.31 | 0.05 | 0.33 | 0.33 | 0.09 | 0.76 | 0.76 | 0.03 | 0.43 | 0.43 |
| Sat Flow, veh/h | 1781 | 1870 | 1585 | 1781 | 1782 | 75 | 1781 | 1870 | 1585 | 1781 | 1362 | 431 |
| Grp Volume(v), veh/h | 52 | 397 | 128 | 98 | 0 | 545 | 128 | 157 | 74 | 42 | 0 | 208 |
| Grp Sat Flow(s),veh/h/n | 1781 | 1870 | 1585 | 1781 | 0 | 1857 | 1781 | 1870 | 1585 | 1781 | 0 | 1793 |
| Q Serve(g_s), s | 2.4 | 22.3 | 7.3 | 4.5 | 0.0 | 33.5 | 4.8 | 2.8 | 1.4 | 1.6 | 0.0 | 8.9 |
| Cycle Q Clear(g_c), s | 2.4 | 22.3 | 7.3 | 4.5 | 0.0 | 33.5 | 4.8 | 2.8 | 1.4 | 1.6 | 0.0 | 8.9 |
| Prop In Lane | 1.00 |  | 1.00 | 1.00 |  | 0.04 | 1.00 |  | 1.00 | 1.00 |  | 0.24 |
| Lane Grp Cap (c), veh/h | 162 | 579 | 491 | 261 | 0 | 608 | 580 | 855 | 724 | 612 | 0 | 774 |
| V/C Ratio(X) | 0.32 | 0.69 | 0.26 | 0.38 | 0.00 | 0.90 | 0.22 | 0.18 | 0.10 | 0.07 | 0.00 | 0.27 |
| Avail Cap(c_a), veh/h | 198 | 862 | 730 | 268 | 0 | 859 | 635 | 855 | 724 | 638 | 0 | 774 |
| HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.67 | 1.67 | 1.67 | 1.00 | 1.00 | 1.00 |
| Upstream Filter(l) | 1.00 | 1.00 | 1.00 | 1.00 | 0.00 | 1.00 | 0.99 | 0.99 | 0.99 | 1.00 | 0.00 | 1.00 |
| Uniform Delay (d), s/veh | 31.0 | 36.3 | 31.1 | 28.2 | 0.0 | 38.4 | 16.4 | 8.0 | 7.9 | 17.7 | 0.0 | 21.9 |
| Incr Delay (d2), s/veh | 1.1 | 1.4 | 0.3 | 0.9 | 0.0 | 9.2 | 0.2 | 0.5 | 0.3 | 0.0 | 0.0 | 0.9 |
| Initial Q Delay(d3),s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| \%ile BackOfQ(50\%),veh/ln | 1.1 | 10.5 | 2.9 | 2.0 | 0.0 | 16.8 | 1.9 | 1.2 | 0.6 | 0.7 | 0.0 | 4.0 |
| Unsig. Movement Delay, s/veh |  |  |  |  |  |  |  |  |  |  |  |  |
| LnGrp Delay (d),s/veh | 32.1 | 37.7 | 31.4 | 29.1 | 0.0 | 47.6 | 16.6 | 8.5 | 8.2 | 17.7 | 0.0 | 22.8 |
| LnGrp LOS | C | D | C | C | A | D | B | A | A | B | A | C |
| Approach Vol, veh/h |  | 577 |  |  | 643 |  |  | 359 |  |  | 250 |  |
| Approach Delay, s/veh |  | 35.8 |  |  | 44.8 |  |  | 11.3 |  |  | 21.9 |  |
| Approach LOS |  | D |  |  | D |  |  | B |  |  | C |  |
| Timer - Assigned Phs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |  |  |  |
| Phs Duration ( $\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$ ), s | 8.3 | 59.3 | 10.7 | 41.7 | 11.3 | 56.3 | 8.6 | 43.8 |  |  |  |  |
| Change Period ( $Y+\mathrm{Rc}$ ), s | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 |  |  |  |  |
| Max Green Setting (Gmax), s | 5.5 | 34.5 | 6.7 | 55.3 | 10.5 | 29.5 | 6.5 | 55.5 |  |  |  |  |
| Max Q Clear Time (g_c+11), s | 3.6 | 4.8 | 6.5 | 24.3 | 6.8 | 10.9 | 4.4 | 35.5 |  |  |  |  |
| Green Ext Time (p_c), s | 0.0 | 1.1 | 0.0 | 3.3 | 0.1 | 1.1 | 0.0 | 3.7 |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| HCM 6th Ctrl DelayHCM 6th LOS |  |  | 32.3 |  |  |  |  |  |  |  |  |  |
|  |  |  | C |  |  |  |  |  |  |  |  |  |


|  | 4 | $\rightarrow$ | 7 |  | 4 | $\dagger$ |  | $\pm$ | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Group | EBL | EBT | WBL | WBT | NBL | NBT | SBL | SBT | SBR |
| Lane Group Flow (vph) | 43 | 164 | 73 | 98 | 68 | 348 | 43 | 296 | 59 |
| v/c Ratio | 0.17 | 0.68 | 0.35 | 0.40 | 0.09 | 0.16 | 0.06 | 0.25 | 0.06 |
| Control Delay | 35.1 | 56.8 | 39.3 | 43.6 | 7.4 | 10.3 | 6.5 | 9.5 | 0.6 |
| Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6 | 0.0 |
| Total Delay | 35.1 | 56.8 | 39.3 | 43.6 | 7.4 | 10.3 | 6.5 | 10.1 | 0.6 |
| Queue Length 50th (ft) | 26 | 106 | 45 | 60 | 16 | 54 | 7 | 62 | 0 |
| Queue Length 95th (ft) | 53 | 170 | 80 | 109 | 37 | 91 | 21 | 122 | 0 |
| Internal Link Dist (ft) |  | 500 |  | 294 |  | 318 |  | 200 |  |
| Turn Bay Length (ft) | 130 |  | 130 |  | 90 |  | 50 |  |  |
| Base Capacity (vph) | 276 | 435 | 221 | 435 | 789 | 2189 | 759 | 1171 | 1031 |
| Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 528 | 0 |
| Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Reduced v/c Ratio | 0.16 | 0.38 | 0.33 | 0.23 | 0.09 | 0.16 | 0.06 | 0.46 | 0.06 |

[^4]|  | 4 | $\rightarrow$ | \% | 7 |  | 4 | 4 | $\dagger$ | 7 |  | $\frac{1}{1}$ | $\downarrow$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | ${ }^{7}$ | F |  | ${ }^{1}$ | $\uparrow$ |  | ${ }^{7}$ | 中 ${ }^{\text {a }}$ |  | ${ }^{1}$ | 4 | 7 |
| Traffic Volume (veh/h) | 41 | 98 | 58 | 69 | 68 | 25 | 65 | 266 | 65 | 41 | 281 | 56 |
| Future Volume (veh/h) | 41 | 98 | 58 | 69 | 68 | 25 | 65 | 266 | 65 | 41 | 281 | 56 |
| Initial $Q(Q b)$, veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Ped-Bike Adj(A_pbT) | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 |
| Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Work Zone On Approach |  | No |  |  | No |  |  | No |  |  | No |  |
| Adj Sat Flow, veh/h/ln | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 |
| Adj Flow Rate, veh/h | 43 | 103 | 61 | 73 | 72 | 26 | 68 | 280 | 68 | 43 | 296 | 59 |
| Peak Hour Factor | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 |
| Percent Heavy Veh, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Cap, veh/h | 221 | 126 | 75 | 174 | 172 | 62 | 726 | 1866 | 445 | 754 | 1216 | 1030 |
| Arrive On Green | 0.03 | 0.11 | 0.11 | 0.05 | 0.13 | 0.13 | 0.04 | 0.66 | 0.66 | 0.03 | 0.65 | 0.65 |
| Sat Flow, veh/h | 1781 | 1101 | 652 | 1781 | 1312 | 474 | 1781 | 2845 | 679 | 1781 | 1870 | 1585 |
| Grp Volume(v), veh/h | 43 | 0 | 164 | 73 | 0 | 98 | 68 | 173 | 175 | 43 | 296 | 59 |
| Grp Sat Flow(s),veh/h/ln | 1781 | 0 | 1753 | 1781 | 0 | 1785 | 1781 | 1777 | 1748 | 1781 | 1870 | 1585 |
| Q Serve(g_s), s | 2.5 | 0.0 | 11.0 | 4.3 | 0.0 | 6.1 | 1.5 | 4.5 | 4.6 | 0.9 | 7.9 | 1.6 |
| Cycle Q Clear(g_c), s | 2.5 | 0.0 | 11.0 | 4.3 | 0.0 | 6.1 | 1.5 | 4.5 | 4.6 | 0.9 | 7.9 | 1.6 |
| Prop In Lane | 1.00 |  | 0.37 | 1.00 |  | 0.27 | 1.00 |  | 0.39 | 1.00 |  | 1.00 |
| Lane Grp Cap(c), veh/h | 221 | 0 | 201 | 174 | 0 | 234 | 726 | 1165 | 1146 | 754 | 1216 | 1030 |
| V/C Ratio(X) | 0.19 | 0.00 | 0.82 | 0.42 | 0.00 | 0.42 | 0.09 | 0.15 | 0.15 | 0.06 | 0.24 | 0.06 |
| Avail Cap(c_a), veh/h | 305 | 0 | 416 | 229 | 0 | 424 | 845 | 1165 | 1146 | 839 | 1216 | 1030 |
| HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Upstream Filter(I) | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.97 | 0.97 | 0.97 |
| Uniform Delay (d), s/veh | 44.9 | 0.0 | 51.9 | 44.4 | 0.0 | 47.9 | 6.4 | 7.9 | 7.9 | 6.3 | 8.7 | 7.6 |
| Incr Delay (d2), s/veh | 0.4 | 0.0 | 7.9 | 1.6 | 0.0 | 1.2 | 0.1 | 0.3 | 0.3 | 0.0 | 0.5 | 0.1 |
| Initial Q Delay(d3),s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| \%ile BackOfQ(50\%),veh/ln | 1.2 | 0.0 | 5.3 | 2.0 | 0.0 | 2.8 | 0.5 | 1.7 | 1.8 | 0.3 | 3.2 | 0.6 |
| Unsig. Movement Delay, s/veh |  |  |  |  |  |  |  |  |  |  |  |  |
| LnGrp Delay(d),s/veh | 45.3 | 0.0 | 59.8 | 46.0 | 0.0 | 49.1 | 6.4 | 8.2 | 8.2 | 6.3 | 9.2 | 7.7 |
| LnGrp LOS | D | A | E | D | A | D | A | A | A | A | A | A |
| Approach Vol, veh/h |  | 207 |  |  | 171 |  |  | 416 |  |  | 398 |  |
| Approach Delay, s/veh |  | 56.8 |  |  | 47.8 |  |  | 7.9 |  |  | 8.7 |  |
| Approach LOS |  | E |  |  | D |  |  | A |  |  | A |  |
| Timer - Assigned Phs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |  |  |  |
| Phs Duration (G+Y+Rc), s | 8.3 | 83.2 | 10.3 | 18.2 | 9.0 | 82.5 | 8.3 | 20.2 |  |  |  |  |
| Change Period ( $\mathrm{Y}+\mathrm{Rc}$ ), s | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 |  |  |  |  |
| Max Green Setting (Gmax), s | 9.5 | 54.5 | 9.5 | 28.5 | 12.5 | 51.5 | 9.5 | 28.5 |  |  |  |  |
| Max Q Clear Time (g_c+11), s | 2.9 | 6.6 | 6.3 | 13.0 | 3.5 | 9.9 | 4.5 | 8.1 |  |  |  |  |
| Green Ext Time (p_c), s | 0.0 | 2.3 | 0.0 | 0.8 | 0.1 | 2.1 | 0.0 | 0.5 |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| HCM 6th Ctrl Delay |  |  | 22.4 |  |  |  |  |  |  |  |  |  |
| HCM 6th LOS |  |  | C |  |  |  |  |  |  |  |  |  |


| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 3 |  |  |  |  |  |  |  |  |  |  |  |  |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |  |
| Lane Configurations | ${ }^{*}$ | $\hat{\beta}$ |  | * | $\uparrow$ |  |  | $\uparrow$ |  |  | * |  |  |
| Traffic Vol, veh/h | 30 | 108 | 6 | 0 | 88 | 9 | 1 | 1 | 0 | 13 | 1 | 54 |  |
| Future Vol, veh/h | 30 | 108 | 6 | 0 | 88 | 9 | 1 | 1 | 0 | 13 | 1 | 54 |  |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| Sign Control F | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |  |
| RT Channelized | - | - | None |  |
| Storage Length | 0 | - | - | 0 | - | - | - | - | - | - | - | - |  |
| Veh in Median Storage, \# | \# | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |  |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |  |
| Peak Hour Factor | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 |  |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |  |
| Mvmt Flow | 38 | 135 | 8 | 0 | 110 | 11 | 1 | 1 | 0 | 16 | 1 | 68 |  |



| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 1.4 |  |  |  |  |  |  |  |  |  |  |  |  |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |  |
| Lane Configurations | ${ }^{*}$ | $\hat{\beta}$ |  | * | $\uparrow$ |  |  | ¢ |  |  | * |  |  |
| Traffic Vol, veh/h | 14 | 125 | 1 | 1 | 80 | 21 | 1 | 0 | 0 | 15 | 0 | 11 |  |
| Future Vol, veh/h | 14 | 125 | 1 | 1 | 80 | 21 | 1 | 0 | 0 | 15 | 0 | 11 |  |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| Sign Control F | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |  |
| RT Channelized | - | - | None |  |
| Storage Length | 0 | - | - | 0 | - | - | - | - | - | - | - | - |  |
| Veh in Median Storage, \# | \# | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |  |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |  |
| Peak Hour Factor | 91 | 91 | 91 | 91 | 91 | 91 | 91 | 91 | 91 | 91 | 91 | 91 |  |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |  |
| Mvmt Flow | 15 | 137 | 1 | 1 | 88 | 23 | 1 | 0 | 0 | 16 | 0 | 12 |  |



5: Roeland Dr \& Martway St

|  |  |  |  |  | EBL |
| :--- | ---: | ---: | ---: | ---: | ---: |
|  |  | EBR | NBL | NBT | SBT |
| Lane Group | 53 | 73 | 36 | 60 | 107 |
| Lane Group Flow (vph) | 0.40 | 0.39 | 0.03 | 0.04 | 0.07 |
| v/C Ratio | 58.1 | 21.2 | 1.7 | 1.7 | 3.0 |
| Control Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Queue Delay | 58.1 | 21.2 | 1.7 | 1.7 | 3.0 |
| Total Delay | 41 | 7 | 3 | 5 | 14 |
| Queue Length 50th (ft) | 81 | 48 | 9 | 13 | 32 |
| Queue Length 95th (ft) | 534 |  |  | 320 | 274 |
| Internal Link Dist (ft) | 115 |  | 115 |  |  |
| Turn Bay Length (ft) | 464 | 469 | 1149 | 1628 | 1476 |
| Base Capacity (vph) | 0 | 0 | 0 | 0 | 0 |
| Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 |
| Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 |
| Storage Cap Reductn | 0.11 | 0.16 | 0.03 | 0.04 | 0.07 |
| Reduced v/c Ratio |  |  |  |  |  |
| Intersection Summary |  |  |  |  |  |


|  | $\stackrel{*}{*}$ |  | 4 |  |  | $\pm$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | EBL | EBR | NBL | NBT | SBT | SBR |
| Lane Configurations | ${ }^{7}$ | 7 | ${ }^{7}$ | 4 | $\uparrow$ |  |
| Traffic Volume (veh/h) | 51 | 71 | 35 | 58 | 75 | 29 |
| Future Volume (veh/h) | 51 | 71 | 35 | 58 | 75 | 29 |
| Initial $Q(Q b)$, veh | 0 | 0 | 0 | 0 | 0 | 0 |
| Ped-Bike Adj(A_pbT) | 1.00 | 1.00 | 1.00 |  |  | 1.00 |
| Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Work Zone On Approach | No |  |  | No | No |  |
| Adj Sat Flow, veh/h/ln | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 |
| Adj Flow Rate, veh/h | 53 | 73 | 36 | 60 | 77 | 30 |
| Peak Hour Factor | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 |
| Percent Heavy Veh, \% | 2 | 2 | 2 | 2 | 2 | 2 |
| Cap, veh/h | 114 | 101 | 1117 | 1611 | 1018 | 397 |
| Arrive On Green | 0.06 | 0.06 | 0.03 | 0.86 | 0.79 | 0.79 |
| Sat Flow, veh/h | 1781 | 1585 | 1781 | 1870 | 1281 | 499 |
| Grp Volume(v), veh/h | 53 | 73 | 36 | 60 | 0 | 107 |
| Grp Sat Flow(s), veh/h/ln | 1781 | 1585 | 1781 | 1870 | 0 | 1781 |
| Q Serve(g_s), s | 3.4 | 5.4 | 0.4 | 0.6 | 0.0 | 1.6 |
| Cycle Q Clear(g_c), s | 3.4 | 5.4 | 0.4 | 0.6 | 0.0 | 1.6 |
| Prop In Lane | 1.00 | 1.00 | 1.00 |  |  | 0.28 |
| Lane Grp Cap(c), veh/h | 114 | 101 | 1117 | 1611 | 0 | 1415 |
| V/C Ratio(X) | 0.47 | 0.72 | 0.03 | 0.04 | 0.00 | 0.08 |
| Avail Cap(c_a), veh/h | 468 | 416 | 1355 | 1611 | 0 | 1415 |
| HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Upstream Filter(l) | 1.00 | 1.00 | 1.00 | 1.00 | 0.00 | 1.00 |
| Uniform Delay (d), s/veh | 54.2 | 55.1 | 1.6 | 1.2 | 0.0 | 2.7 |
| Incr Delay (d2), s/veh | 3.0 | 9.3 | 0.0 | 0.0 | 0.0 | 0.1 |
| Initial Q Delay(d3),s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| \%ile BackOfQ(50\%),veh/ln | 1.7 | 5.0 | 0.1 | 0.1 | 0.0 | 0.5 |
| Unsig. Movement Delay, s/veh |  |  |  |  |  |  |
| LnGrp Delay(d),s/veh | 57.2 | 64.4 | 1.6 | 1.2 | 0.0 | 2.8 |
| LnGrp LOS | E | E | A | A | A | A |
| Approach Vol, veh/h | 126 |  |  | 96 | 107 |  |
| Approach Delay, s/veh | 61.4 |  |  | 1.4 | 2.8 |  |
| Approach LOS | E |  |  | A | A |  |
| Timer - Assigned Phs |  | 2 |  | 4 | 5 | 6 |
| Phs Duration ( $G+Y+R c$ ), $s$ |  | 107.8 |  | 12.2 | 8.0 | 99.9 |
| Change Period ( $\mathrm{Y}+\mathrm{Rc}$ ), s |  | 4.5 |  | 4.5 | 4.5 | 4.5 |
| Max Green Setting (Gmax), s |  | 79.5 |  | 31.5 | 19.5 | 55.5 |
| Max Q Clear Time (g_c+11), s |  | 2.6 |  | 7.4 | 2.4 | 3.6 |
| Green Ext Time (p_c), s |  | 0.4 |  | 0.3 | 0.0 | 0.7 |
| Intersection Summary |  |  |  |  |  |  |
| HCM 6th Ctrl Delay |  |  | 24.8 |  |  |  |
| HCM 6th LOS |  | C |  |  |  |  |


|  | 4 | $\rightarrow$ | 7 | $\dagger$ |  | 4 | $\uparrow$ | $p$ |  | $\downarrow$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Group | EBL | EBT | EBR | WBL | WBT | NBL | NBT | NBR | SBL | SBT |
| Lane Group Flow (vph) | 44 | 309 | 138 | 52 | 299 | 112 | 99 | 65 | 26 | 223 |
| $\mathrm{v} / \mathrm{C}$ Ratio | 0.21 | 0.77 | 0.31 | 0.25 | 0.72 | 0.17 | 0.09 | 0.07 | 0.03 | 0.24 |
| Control Delay | 27.8 | 56.2 | 7.3 | 28.6 | 52.0 | 10.4 | 13.6 | 0.9 | 12.5 | 19.1 |
| Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Total Delay | 27.8 | 56.2 | 7.3 | 28.6 | 52.0 | 10.4 | 13.6 | 0.9 | 12.5 | 19.1 |
| Queue Length 50th (ft) | 24 | 226 | 0 | 28 | 215 | 29 | 27 | 1 | 8 | 90 |
| Queue Length 95th (ft) | 45 | 299 | 48 | 51 | 281 | 49 | 46 | 1 | 24 | 177 |
| Internal Link Dist (ft) |  | 202 |  |  | 232 |  | 200 |  |  | 299 |
| Turn Bay Length (ft) | 115 |  | 230 | 200 |  | 70 |  | 100 | 50 |  |
| Base Capacity (vph) | 219 | 628 | 625 | 230 | 655 | 711 | 1054 | 936 | 770 | 922 |
| Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Reduced v/c Ratio | 0.20 | 0.49 | 0.22 | 0.23 | 0.46 | 0.16 | 0.09 | 0.07 | 0.03 | 0.24 |

[^5]|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |


|  | 4 | $\rightarrow$ | 7 |  | 4 | $\dagger$ |  | $\downarrow$ | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Group | EBL | EBT | WBL | WBT | NBL | NBT | SBL | SBT | SBR |
| Lane Group Flow (vph) | 32 | 102 | 23 | 40 | 67 | 280 | 32 | 260 | 69 |
| v/c Ratio | 0.17 | 0.57 | 0.14 | 0.27 | 0.08 | 0.11 | 0.04 | 0.20 | 0.06 |
| Control Delay | 42.5 | 41.4 | 39.0 | 35.2 | 4.6 | 6.3 | 4.9 | 7.2 | 1.4 |
| Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | 0.0 |
| Total Delay | 42.5 | 41.4 | 39.0 | 35.2 | 4.6 | 6.3 | 4.9 | 7.7 | 1.4 |
| Queue Length 50th (ft) | 21 | 41 | 15 | 17 | 11 | 34 | 3 | 42 | 1 |
| Queue Length 95th (ft) | 47 | 95 | 37 | 51 | 29 | 62 | 18 | 111 | 0 |
| Internal Link Dist (ft) |  | 57 |  | 294 |  | 318 |  | 200 |  |
| Turn Bay Length (ft) | 130 |  | 130 |  | 90 |  | 50 |  |  |
| Base Capacity (vph) | 216 | 442 | 197 | 427 | 911 | 2526 | 888 | 1319 | 1149 |
| Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 678 | 0 |
| Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Reduced v/c Ratio | 0.15 | 0.23 | 0.12 | 0.09 | 0.07 | 0.11 | 0.04 | 0.41 | 0.06 |

[^6]





5: Roeland Dr \& Martway St/Mission Gateway Dr

|  | * | $\rightarrow$ | 7 |  | 4 | $\dagger$ |  | $\downarrow$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Group | EBL | EBT | WBL | WBT | NBL | NBT | SBL | SBT |
| Lane Group Flow (vph) | 27 | 17 | 43 | 8 | 34 | 94 | 7 | 140 |
| v/c Ratio | 0.25 | 0.02 | 0.41 | 0.01 | 0.03 | 0.07 | 0.01 | 0.10 |
| Control Delay | 55.2 | 0.1 | 63.2 | 0.0 | 4.6 | 3.5 | 8.7 | 7.0 |
| Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Total Delay | 55.2 | 0.1 | 63.2 | 0.0 | 4.6 | 3.5 | 8.7 | 7.0 |
| Queue Length 50th (ft) | 20 | 0 | 32 | 0 | 6 | 12 | 2 | 34 |
| Queue Length 95th (ft) | 51 | 0 | 69 | 0 | 17 | 31 | 8 | 69 |
| Internal Link Dist (ft) |  | 534 |  | 159 |  | 165 |  | 274 |
| Turn Bay Length (ft) | 115 |  |  |  | 115 |  |  |  |
| Base Capacity (vph) | 346 | 958 | 306 | 1061 | 1002 | 1443 | 976 | 1372 |
| Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Reduced v/c Ratio | 0.08 | 0.02 | 0.14 | 0.01 | 0.03 | 0.07 | 0.01 | 0.10 |
| Intersection Summary |  |  |  |  |  |  |  |  |


|  | $\rangle$ |  |  | 7 |  |  | 4 | $\dagger$ | $p$ |  | $\downarrow$ | $\checkmark$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | 7 | $\uparrow$ |  | \% | $\uparrow$ |  | \% | $\uparrow$ |  | ${ }_{1}$ | $\uparrow$ |  |
| Traffic Volume (veh/h) | 24 | 0 | 15 | 40 | 0 | 7 | 30 | 59 | 26 | 6 | 105 | 20 |
| Future Volume (veh/h) | 24 | 0 | 15 | 40 | 0 | 7 | 30 | 59 | 26 | 6 | 105 | 20 |
| Initial $\mathrm{Q}(\mathrm{Qb})$, veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Ped-Bike Adj(A_pbT) | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 |
| Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Work Zone On Approach |  | No |  |  | No |  |  | No |  |  | No |  |
| Adj Sat Flow, veh/h/ln | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 |
| Adj Flow Rate, veh/h | 27 | 0 | 17 | 43 | 0 | 8 | 34 | 66 | 28 | 7 | 118 | 22 |
| Peak Hour Factor | 0.89 | 0.92 | 0.89 | 0.92 | 0.92 | 0.92 | 0.89 | 0.89 | 0.92 | 0.92 | 0.89 | 0.89 |
| Percent Heavy Veh, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Cap, veh/h | 57 | 0 | 51 | 61 | 0 | 54 | 1028 | 1024 | 434 | 1044 | 1158 | 216 |
| Arrive On Green | 0.03 | 0.00 | 0.03 | 0.03 | 0.00 | 0.03 | 0.03 | 0.82 | 0.82 | 0.76 | 0.76 | 0.76 |
| Sat Flow, veh/h | 1781 | 0 | 1585 | 1781 | 0 | 1585 | 1781 | 1246 | 529 | 1302 | 1533 | 286 |
| Grp Volume(v), veh/h | 27 | 0 | 17 | 43 | 0 | 8 | 34 | 0 | 94 | 7 | 0 | 140 |
| Grp Sat Flow(s),veh/h/ln | 1781 | 0 | 1585 | 1781 | 0 | 1585 | 1781 | 0 | 1775 | 1302 | 0 | 1819 |
| Q Serve(g_s), s | 1.8 | 0.0 | 1.3 | 2.9 | 0.0 | 0.6 | 0.5 | 0.0 | 1.2 | 0.2 | 0.0 | 2.4 |
| Cycle Q Clear (g_c), s | 1.8 | 0.0 | 1.3 | 2.9 | 0.0 | 0.6 | 0.5 | 0.0 | 1.2 | 0.2 | 0.0 | 2.4 |
| Prop In Lane | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 0.30 | 1.00 |  | 0.16 |
| Lane Grp Cap (c), veh/h | 57 | 0 | 51 | 61 | 0 | 54 | 1028 | 0 | 1458 | 1044 | 0 | 1374 |
| V/C Ratio(X) | 0.47 | 0.00 | 0.33 | 0.71 | 0.00 | 0.15 | 0.03 | 0.00 | 0.06 | 0.01 | 0.00 | 0.10 |
| Avail Cap(c_a), veh/h | 349 | 0 | 310 | 393 | 0 | 350 | 1149 | 0 | 1458 | 1044 | 0 | 1374 |
| HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Upstream Filter(l) | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 |
| Uniform Delay (d), s/veh | 57.1 | 0.0 | 56.8 | 57.4 | 0.0 | 56.3 | 2.5 | 0.0 | 2.0 | 3.6 | 0.0 | 3.9 |
| Incr Delay (d2), s/veh | 6.0 | 0.0 | 3.8 | 14.1 | 0.0 | 1.2 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.1 |
| Initial Q Delay(d3),s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| \%ile BackOfQ(50\%),veh/ln | 0.9 | 0.0 | 0.6 | 1.5 | 0.0 | 0.3 | 0.1 | 0.0 | 0.3 | 0.0 | 0.0 | 0.9 |
| Unsig. Movement Delay, s/veh |  |  |  |  |  |  |  |  |  |  |  |  |
| LnGrp Delay(d),s/veh | 63.0 | 0.0 | 60.6 | 71.5 | 0.0 | 57.5 | 2.5 | 0.0 | 2.1 | 3.6 | 0.0 | 4.0 |
| LnGrp LOS | E | A | E | E | A | E | A | A | A | A | A | A |
| Approach Vol, veh/h |  | 44 |  |  | 51 |  |  | 128 |  |  | 147 |  |
| Approach Delay, s/veh |  | 62.1 |  |  | 69.3 |  |  | 2.2 |  |  | 4.0 |  |
| Approach LOS |  | E |  |  | E |  |  | A |  |  | A |  |
| Timer - Assigned Phs |  | 2 |  | 4 | 5 | 6 |  | 8 |  |  |  |  |
| Phs Duration ( $\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$ ), $s$ |  | 103.1 |  | 8.3 | 7.9 | 95.2 |  | 8.6 |  |  |  |  |
| Change Period ( $Y+R \mathrm{Rc}$ ), s |  | 4.5 |  | 4.5 | 4.5 | 4.5 |  | 4.5 |  |  |  |  |
| Max Green Setting (Gmax), s |  | 56.5 |  | 23.5 | 11.5 | 40.5 |  | 26.5 |  |  |  |  |
| Max Q Clear Time (g_c+11), s |  | 3.2 |  | 3.8 | 2.5 | 4.4 |  | 4.9 |  |  |  |  |
| Green Ext Time (p_c), s |  | 0.6 |  | 0.1 | 0.0 | 0.8 |  | 0.1 |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| HCM 6th Ctrl Delay |  |  | 19.3 |  |  |  |  |  |  |  |  |  |
| HCM 6th LOS |  |  | B |  |  |  |  |  |  |  |  |  |


|  | 3 | $\rightarrow$ | $\stackrel{7}{7}$ | 7 |  | 4 | $\dagger$ | \% |  | $\dagger$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Group | EBL | EBT | EBR | WBL | WBT | NBL | NBT | NBR | SBL | SBT |
| Lane Group Flow (vph) | 52 | 442 | 128 | 98 | 588 | 128 | 157 | 74 | 42 | 208 |
| v/c Ratio | 0.29 | 0.66 | 0.19 | 0.35 | 0.82 | 0.26 | 0.21 | 0.11 | 0.08 | 0.33 |
| Control Delay | 19.3 | 35.8 | 3.5 | 20.2 | 42.6 | 18.1 | 23.3 | 1.3 | 22.2 | 32.4 |
| Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4 | 0.0 | 0.0 | 0.0 |
| Total Delay | 19.3 | 35.8 | 3.5 | 20.2 | 42.6 | 18.1 | 23.7 | 1.3 | 22.2 | 32.4 |
| Queue Length 50th (ft) | 21 | 275 | 0 | 41 | 401 | 44 | 56 | 1 | 18 | 115 |
| Queue Length 95th (ft) | 37 | 334 | 30 | 62 | 477 | 72 | 137 | 5 | 46 | 208 |
| Internal Link Dist (ft) |  | 527 |  |  | 232 |  | 200 |  |  | 299 |
| Turn Bay Length (ft) | 115 |  | 230 | 200 |  | 70 |  | 100 | 50 |  |
| Base Capacity (vph) | 182 | 877 | 817 | 279 | 888 | 506 | 737 | 683 | 527 | 637 |
| Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 285 | 0 | 0 | 0 |
| Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Reduced v/c Ratio | 0.29 | 0.50 | 0.16 | 0.35 | 0.66 | 0.25 | 0.35 | 0.11 | 0.08 | 0.33 |

[^7]|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |


|  | 4 | $\rightarrow$ | 7 |  | 4 | 4 |  | $\dagger$ | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Group | EBL | EBT | WBL | WBT | NBL | NBT | SBL | SBT | SBR |
| Lane Group Flow (vph) | 43 | 164 | 73 | 98 | 68 | 348 | 43 | 296 | 59 |
| v/c Ratio | 0.17 | 0.68 | 0.35 | 0.40 | 0.09 | 0.16 | 0.06 | 0.25 | 0.06 |
| Control Delay | 35.1 | 56.8 | 38.4 | 42.9 | 7.4 | 10.3 | 5.5 | 8.4 | 0.2 |
| Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | 0.0 |
| Total Delay | 35.1 | 56.8 | 38.4 | 42.9 | 7.4 | 10.3 | 5.5 | 8.9 | 0.2 |
| Queue Length 50th (ft) | 26 | 106 | 45 | 59 | 16 | 54 | 6 | 60 | 0 |
| Queue Length 95th (ft) | 53 | 170 | 80 | 110 | 37 | 91 | 19 | 112 | 0 |
| Internal Link Dist (ft) |  | 500 |  | 294 |  | 318 |  | 200 |  |
| Turn Bay Length (ft) | 130 |  | 130 |  | 90 |  | 50 |  |  |
| Base Capacity (vph) | 276 | 435 | 221 | 435 | 789 | 2189 | 759 | 1171 | 1031 |
| Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 514 | 0 |
| Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Reduced v/c Ratio | 0.16 | 0.38 | 0.33 | 0.23 | 0.09 | 0.16 | 0.06 | 0.45 | 0.06 |

[^8]|  | 4 | $\rightarrow$ | 7 | 7 |  | 4 | 4 | $\dagger$ | 7 |  | $\frac{1}{\dagger}$ | $\pm$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | ${ }^{*}$ | $\uparrow$ |  | ${ }^{1}$ | $\uparrow$ |  | ${ }^{7}$ | 中 ${ }^{\text {a }}$ |  | ${ }^{*}$ | 4 | 7 |
| Traffic Volume (veh/h) | 41 | 98 | 58 | 69 | 68 | 25 | 65 | 266 | 65 | 41 | 281 | 56 |
| Future Volume (veh/h) | 41 | 98 | 58 | 69 | 68 | 25 | 65 | 266 | 65 | 41 | 281 | 56 |
| Initial $Q(Q b)$, veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Ped-Bike Adj(A_pbT) | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 |
| Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Work Zone On Approach |  | No |  |  | No |  |  | No |  |  | No |  |
| Adj Sat Flow, veh/h/ln | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 |
| Adj Flow Rate, veh/h | 43 | 103 | 61 | 73 | 72 | 26 | 68 | 280 | 68 | 43 | 296 | 59 |
| Peak Hour Factor | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 |
| Percent Heavy Veh, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Cap, veh/h | 221 | 126 | 75 | 174 | 172 | 62 | 726 | 1866 | 445 | 754 | 1216 | 1030 |
| Arrive On Green | 0.03 | 0.11 | 0.11 | 0.05 | 0.13 | 0.13 | 0.04 | 0.66 | 0.66 | 0.03 | 0.65 | 0.65 |
| Sat Flow, veh/h | 1781 | 1101 | 652 | 1781 | 1312 | 474 | 1781 | 2845 | 679 | 1781 | 1870 | 1585 |
| Grp Volume(v), veh/h | 43 | 0 | 164 | 73 | 0 | 98 | 68 | 173 | 175 | 43 | 296 | 59 |
| Grp Sat Flow(s), veh/h/ln | 1781 | 0 | 1753 | 1781 | 0 | 1785 | 1781 | 1777 | 1748 | 1781 | 1870 | 1585 |
| Q Serve(g_s), s | 2.5 | 0.0 | 11.0 | 4.3 | 0.0 | 6.1 | 1.5 | 4.5 | 4.6 | 0.9 | 7.9 | 1.6 |
| Cycle Q Clear(g_c), s | 2.5 | 0.0 | 11.0 | 4.3 | 0.0 | 6.1 | 1.5 | 4.5 | 4.6 | 0.9 | 7.9 | 1.6 |
| Prop In Lane | 1.00 |  | 0.37 | 1.00 |  | 0.27 | 1.00 |  | 0.39 | 1.00 |  | 1.00 |
| Lane Grp Cap(c), veh/h | 221 | 0 | 201 | 174 | 0 | 234 | 726 | 1165 | 1146 | 754 | 1216 | 1030 |
| V/C Ratio(X) | 0.19 | 0.00 | 0.82 | 0.42 | 0.00 | 0.42 | 0.09 | 0.15 | 0.15 | 0.06 | 0.24 | 0.06 |
| Avail Cap(c_a), veh/h | 305 | 0 | 416 | 229 | 0 | 424 | 845 | 1165 | 1146 | 839 | 1216 | 1030 |
| HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Upstream Filter(I) | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.97 | 0.97 | 0.97 |
| Uniform Delay (d), s/veh | 44.9 | 0.0 | 51.9 | 44.4 | 0.0 | 47.9 | 6.4 | 7.9 | 7.9 | 6.3 | 8.7 | 7.6 |
| Incr Delay (d2), s/veh | 0.4 | 0.0 | 7.9 | 1.6 | 0.0 | 1.2 | 0.1 | 0.3 | 0.3 | 0.0 | 0.5 | 0.1 |
| Initial Q Delay(d3),s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| \%ile BackOfQ(50\%),veh/ln | 1.2 | 0.0 | 5.3 | 2.0 | 0.0 | 2.8 | 0.5 | 1.7 | 1.8 | 0.3 | 3.2 | 0.6 |
| Unsig. Movement Delay, s/veh |  |  |  |  |  |  |  |  |  |  |  |  |
| LnGrp Delay(d),s/veh | 45.3 | 0.0 | 59.8 | 46.0 | 0.0 | 49.1 | 6.4 | 8.2 | 8.2 | 6.3 | 9.2 | 7.7 |
| LnGrp LOS | D | A | E | D | A | D | A | A | A | A | A | A |
| Approach Vol, veh/h |  | 207 |  |  | 171 |  |  | 416 |  |  | 398 |  |
| Approach Delay, s/veh |  | 56.8 |  |  | 47.8 |  |  | 7.9 |  |  | 8.7 |  |
| Approach LOS |  | E |  |  | D |  |  | A |  |  | A |  |
| Timer - Assigned Phs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |  |  |  |
| Phs Duration ( $\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$ ), s | 8.3 | 83.2 | 10.3 | 18.2 | 9.0 | 82.5 | 8.3 | 20.2 |  |  |  |  |
| Change Period (Y+Rc), s | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 |  |  |  |  |
| Max Green Setting (Gmax), s | 9.5 | 54.5 | 9.5 | 28.5 | 12.5 | 51.5 | 9.5 | 28.5 |  |  |  |  |
| Max Q Clear Time (g_c+11), s | 2.9 | 6.6 | 6.3 | 13.0 | 3.5 | 9.9 | 4.5 | 8.1 |  |  |  |  |
| Green Ext Time (p_c), s | 0.0 | 2.3 | 0.0 | 0.8 | 0.1 | 2.1 | 0.0 | 0.5 |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| HCM 6th Ctrl Delay |  |  | 22.4 |  |  |  |  |  |  |  |  |  |
| HCM 6th LOS |  |  | C |  |  |  |  |  |  |  |  |  |


| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 3 |  |  |  |  |  |  |  |  |  |  |  |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | ${ }^{7}$ | $\uparrow$ |  | ${ }^{1}$ | $\uparrow$ |  |  | $\uparrow$ |  |  | \& |  |
| Traffic Vol, veh/h | 30 | 108 | 6 | 0 | 88 | 9 | 1 | 1 | 0 | 13 | 1 | 54 |
| Future Vol, veh/h | 30 | 108 | 6 | 0 | 88 | 9 | 1 | 1 | 0 | 13 | 1 | 54 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized | - | - | None |
| Storage Length | 0 | - | - | 0 | - | - | - | - | - | - | - | - |
| Veh in Median Storage, \# | \# | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Peak Hour Factor | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mvmt Flow | 38 | 135 | 8 | 0 | 110 | 11 | 1 | 1 | 0 | 16 | 1 | 68 |



| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 1.4 |  |  |  |  |  |  |  |  |  |  |  |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | ${ }^{7}$ | $\uparrow$ |  | ${ }^{1}$ | $\uparrow$ |  |  | $\uparrow$ |  |  | \& |  |
| Traffic Vol, veh/h | 14 | 125 | 1 | 1 | 80 | 21 | 1 | 0 | 0 | 15 | 0 | 11 |
| Future Vol, veh/h | 14 | 125 | 1 | 1 | 80 | 21 | 1 | 0 | 0 | 15 | 0 | 11 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized | - | - | None |
| Storage Length | 0 | - | - | 0 | - | - | - | - | - | - | - | - |
| Veh in Median Storage, \# | \# | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Peak Hour Factor | 91 | 91 | 91 | 91 | 91 | 91 | 91 | 91 | 91 | 91 | 91 | 91 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mvmt Flow | 15 | 137 | 1 | 1 | 88 | 23 | 1 | 0 | 0 | 16 | 0 | 12 |



5: Roeland Dr \& Martway St/Mission Gateway Dr

|  | * | $\rightarrow$ | 7 |  | 4 | $\dagger$ |  | $\downarrow$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Group | EBL | EBT | WBL | WBT | NBL | NBT | SBL | SBT |
| Lane Group Flow (vph) | 53 | 73 | 41 | 12 | 36 | 104 | 7 | 136 |
| v/c Ratio | 0.40 | 0.08 | 0.41 | 0.01 | 0.04 | 0.07 | 0.01 | 0.10 |
| Control Delay | 55.3 | 0.2 | 63.7 | 0.0 | 5.5 | 4.4 | 9.7 | 7.9 |
| Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Total Delay | 55.3 | 0.2 | 63.7 | 0.0 | 5.5 | 4.4 | 9.7 | 7.9 |
| Queue Length 50th (ft) | 40 | 0 | 31 | 0 | 7 | 16 | 2 | 33 |
| Queue Length 95th (ft) | 82 | 0 | 67 | 0 | 19 | 39 | 9 | 71 |
| Internal Link Dist (ft) |  | 534 |  | 206 |  | 320 |  | 274 |
| Turn Bay Length (ft) | 115 |  |  |  | 115 |  |  |  |
| Base Capacity (vph) | 390 | 987 | 280 | 1009 | 966 | 1393 | 927 | 1303 |
| Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Reduced v/c Ratio | 0.14 | 0.07 | 0.15 | 0.01 | 0.04 | 0.07 | 0.01 | 0.10 |
| Intersection Summary |  |  |  |  |  |  |  |  |


|  | 4 |  | $\checkmark$ | 7 | $4$ | 4 | 4 | $\dagger$ | $p$ |  | $\dagger$ | $\downarrow$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | ${ }^{*}$ | $\uparrow$ |  | ${ }^{1}$ | $\uparrow$ |  | * | $\uparrow$ |  | ${ }^{*}$ | $\uparrow$ |  |
| Traffic Volume (veh/h) | 51 | 0 | 71 | 38 | 0 | 11 | 35 | 74 | 26 | 6 | 103 | 29 |
| Future Volume (veh/h) | 51 | 0 | 71 | 38 | 0 | 11 | 35 | 74 | 26 | 6 | 103 | 29 |
| Initial $Q(Q b)$, veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Ped-Bike Adj(A_pbT) | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 |
| Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Work Zone On Approach |  | No |  |  | No |  |  | No |  |  | No |  |
| Adj Sat Flow, veh/h/ln | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 |
| Adj Flow Rate, veh/h | 53 | 0 | 73 | 41 | 0 | 12 | 36 | 76 | 28 | 7 | 106 | 30 |
| Peak Hour Factor | 0.97 | 0.92 | 0.97 | 0.92 | 0.92 | 0.92 | 0.97 | 0.97 | 0.92 | 0.92 | 0.97 | 0.97 |
| Percent Heavy Veh, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Cap, veh/h | 116 | 0 | 103 | 62 | 0 | 55 | 987 | 1027 | 378 | 991 | 1012 | 286 |
| Arrive On Green | 0.06 | 0.00 | 0.06 | 0.03 | 0.00 | 0.03 | 0.03 | 0.79 | 0.79 | 0.72 | 0.72 | 0.72 |
| Sat Flow, veh/h | 1781 | 0 | 1585 | 1781 | 0 | 1585 | 1781 | 1304 | 480 | 1290 | 1402 | 397 |
| Grp Volume(v), veh/h | 53 | 0 | 73 | 41 | 0 | 12 | 36 | 0 | 104 | 7 | 0 | 136 |
| Grp Sat Flow(s), veh/h/ln | 1781 | 0 | 1585 | 1781 | 0 | 1585 | 1781 | 0 | 1784 | 1290 | 0 | 1799 |
| Q Serve(g_s), s | 3.4 | 0.0 | 5.4 | 2.7 | 0.0 | 0.9 | 0.6 | 0.0 | 1.6 | 0.2 | 0.0 | 2.7 |
| Cycle Q Clear(g_c), s | 3.4 | 0.0 | 5.4 | 2.7 | 0.0 | 0.9 | 0.6 | 0.0 | 1.6 | 0.2 | 0.0 | 2.7 |
| Prop In Lane | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 0.27 | 1.00 |  | 0.22 |
| Lane Grp Cap(c), veh/h | 116 | 0 | 103 | 62 | 0 | 55 | 987 | 0 | 1406 | 991 | 0 | 1298 |
| V/C Ratio(X) | 0.46 | 0.00 | 0.71 | 0.67 | 0.00 | 0.22 | 0.04 | 0.00 | 0.07 | 0.01 | 0.00 | 0.10 |
| Avail Cap(c_a), veh/h | 393 | 0 | 350 | 379 | 0 | 337 | 1106 | 0 | 1406 | 991 | 0 | 1298 |
| HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Upstream Filter(I) | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 |
| Uniform Delay (d), s/veh | 54.1 | 0.0 | 55.0 | 57.2 | 0.0 | 56.4 | 3.4 | 0.0 | 2.9 | 4.7 | 0.0 | 5.0 |
| Incr Delay (d2), s/veh | 2.8 | 0.0 | 8.7 | 11.7 | 0.0 | 2.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.2 |
| Initial Q Delay(d3),s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| \%ile BackOfQ(50\%),veh/In | 1.6 | 0.0 | 2.4 | 1.4 | 0.0 | 0.4 | 0.2 | 0.0 | 0.5 | 0.0 | 0.0 | 1.0 |
| Unsig. Movement Delay, s/veh |  |  |  |  |  |  |  |  |  |  |  |  |
| LnGrp Delay(d),s/veh | 56.9 | 0.0 | 63.7 | 68.9 | 0.0 | 58.3 | 3.4 | 0.0 | 3.0 | 4.7 | 0.0 | 5.2 |
| LnGrp LOS | E | A | E | E | A | E | A | A | A | A | A | A |
| Approach Vol, veh/h |  | 126 |  |  | 53 |  |  | 140 |  |  | 143 |  |
| Approach Delay, s/veh |  | 60.8 |  |  | 66.5 |  |  | 3.1 |  |  | 5.2 |  |
| Approach LOS |  | E |  |  | E |  |  | A |  |  | A |  |
| Timer - Assigned Phs |  | 2 |  | 4 | 5 | 6 |  | 8 |  |  |  |  |
| Phs Duration ( $\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$ ), s |  | 99.1 |  | 12.3 | 8.0 | 91.1 |  | 8.6 |  |  |  |  |
| Change Period ( $\mathrm{Y}+\mathrm{Rc}$ ), s |  | 4.5 |  | 4.5 | 4.5 | 4.5 |  | 4.5 |  |  |  |  |
| Max Green Setting (Gmax), s |  | 54.5 |  | 26.5 | 11.5 | 38.5 |  | 25.5 |  |  |  |  |
| Max Q Clear Time (g_c+11), s |  | 3.6 |  | 7.4 | 2.6 | 4.7 |  | 4.7 |  |  |  |  |
| Green Ext Time (p_c), s |  | 0.6 |  | 0.5 | 0.0 | 0.8 |  | 0.1 |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| HCM 6th Ctrl Delay |  |  | 26.8 |  |  |  |  |  |  |  |  |  |
| HCM 6th LOS |  |  | C |  |  |  |  |  |  |  |  |  |


|  | * | $\rightarrow$ | \% | 7 |  | 4 | 4 | 7 |  | $\frac{1}{\dagger}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Group | EBL | EBT | EBR | WBL | WBT | NBL | NBT | NBR | SBL | SBT |
| Lane Group Flow (vph) | 44 | 309 | 140 | 52 | 299 | 118 | 99 | 65 | 26 | 223 |
| v/c Ratio | 0.21 | 0.76 | 0.31 | 0.25 | 0.72 | 0.17 | 0.09 | 0.07 | 0.03 | 0.24 |
| Control Delay | 28.0 | 55.8 | 7.2 | 28.9 | 52.1 | 10.5 | 13.3 | 0.9 | 12.3 | 19.1 |
| Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Total Delay | 28.0 | 55.8 | 7.2 | 28.9 | 52.1 | 10.5 | 13.3 | 0.9 | 12.3 | 19.1 |
| Queue Length 50th (ft) | 24 | 225 | 0 | 28 | 213 | 32 | 28 | 0 | 8 | 91 |
| Queue Length 95th (ft) | 46 | 298 | 48 | 51 | 283 | 56 | 50 | 1 | 24 | 176 |
| Internal Link Dist (ft) |  | 382 |  |  | 232 |  | 200 |  |  | 299 |
| Turn Bay Length (ft) | 115 |  | 230 | 200 |  | 70 |  | 100 | 50 |  |
| Base Capacity (vph) | 218 | 675 | 663 | 218 | 687 | 711 | 1055 | 938 | 769 | 920 |
| Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Reduced v/c Ratio | 0.20 | 0.46 | 0.21 | 0.24 | 0.44 | 0.17 | 0.09 | 0.07 | 0.03 | 0.24 |

[^9]|  | 4 | $\rightarrow$ | 7 | 7 |  | 4 | 4 | 4 | 7 | ( | $\ddagger$ | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | ${ }^{7}$ | 4 | 「 | ${ }^{1 /}$ | $\uparrow$ |  | ${ }^{7}$ | 4 | 「' | ${ }^{1 /}$ | $\uparrow$ |  |
| Traffic Volume (veh/h) | 41 | 287 | 130 | 48 | 264 | 14 | 110 | 92 | 60 | 24 | 153 | 54 |
| Future Volume (veh/h) | 41 | 287 | 130 | 48 | 264 | 14 | 110 | 92 | 60 | 24 | 153 | 54 |
| Initial $Q(Q b)$, veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Ped-Bike Adj(A_pbT) | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 |
| Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Work Zone On Approach |  | No |  |  | No |  |  | No |  |  | No |  |
| Adj Sat Flow, veh/h/ln | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 |
| Adj Flow Rate, veh/h | 44 | 309 | 140 | 52 | 284 | 15 | 118 | 99 | 65 | 26 | 165 | 58 |
| Peak Hour Factor | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 |
| Percent Heavy Veh, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Cap, veh/h | 165 | 366 | 311 | 156 | 349 | 18 | 735 | 1114 | 944 | 806 | 760 | 267 |
| Arrive On Green | 0.03 | 0.20 | 0.20 | 0.03 | 0.20 | 0.20 | 0.07 | 0.99 | 0.99 | 0.02 | 0.58 | 0.58 |
| Sat Flow, veh/h | 1781 | 1870 | 1585 | 1781 | 1761 | 93 | 1781 | 1870 | 1585 | 1781 | 1322 | 465 |
| Grp Volume(v), veh/h | 44 | 309 | 140 | 52 | 0 | 299 | 118 | 99 | 65 | 26 | 0 | 223 |
| Grp Sat Flow(s), veh/h/ln | 1781 | 1870 | 1585 | 1781 | 0 | 1854 | 1781 | 1870 | 1585 | 1781 | 0 | 1787 |
| Q Serve(g_s), s | 2.3 | 19.1 | 9.3 | 2.8 | 0.0 | 18.5 | 3.3 | 0.0 | 0.0 | 0.7 | 0.0 | 7.3 |
| Cycle Q Clear(g_c), s | 2.3 | 19.1 | 9.3 | 2.8 | 0.0 | 18.5 | 3.3 | 0.0 | 0.0 | 0.7 | 0.0 | 7.3 |
| Prop In Lane | 1.00 |  | 1.00 | 1.00 |  | 0.05 | 1.00 |  | 1.00 | 1.00 |  | 0.26 |
| Lane Grp Cap(c), veh/h | 165 | 366 | 311 | 156 | 0 | 367 | 735 | 1114 | 944 | 806 | 0 | 1028 |
| V/C Ratio(X) | 0.27 | 0.84 | 0.45 | 0.33 | 0.00 | 0.81 | 0.16 | 0.09 | 0.07 | 0.03 | 0.00 | 0.22 |
| Avail Cap(c_a), veh/h | 219 | 678 | 575 | 221 | 0 | 687 | 856 | 1114 | 944 | 874 | 0 | 1028 |
| HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.67 | 1.67 | 1.67 | 1.00 | 1.00 | 1.00 |
| Upstream Filter(l) | 1.00 | 1.00 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.00 | 1.00 |
| Uniform Delay (d), s/veh | 38.1 | 46.5 | 42.6 | 38.2 | 0.0 | 46.0 | 9.2 | 0.1 | 0.1 | 9.8 | 0.0 | 12.4 |
| Incr Delay (d2), s/veh | 0.9 | 5.3 | 1.0 | 1.2 | 0.0 | 4.4 | 0.1 | 0.2 | 0.1 | 0.0 | 0.0 | 0.5 |
| Initial Q Delay(d3),s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| \%ile BackOfQ(50\%),veh/In | 1.1 | 9.5 | 3.8 | 1.3 | 0.0 | 9.0 | 1.2 | 0.1 | 0.0 | 0.3 | 0.0 | 3.0 |
| Unsig. Movement Delay, s/veh |  |  |  |  |  |  |  |  |  |  |  |  |
| LnGrp Delay(d),s/veh | 39.0 | 51.8 | 43.6 | 39.5 | 0.0 | 50.4 | 9.3 | 0.3 | 0.3 | 9.8 | 0.0 | 12.9 |
| LnGrp LOS | D | D | D | D | A | D | A | A | A | A | A | B |
| Approach Vol, veh/h |  | 493 |  |  | 351 |  |  | 282 |  |  | 249 |  |
| Approach Delay, s/veh |  | 48.3 |  |  | 48.8 |  |  | 4.1 |  |  | 12.5 |  |
| Approach LOS |  | D |  |  | D |  |  | A |  |  | B |  |
| Timer - Assigned Phs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |  |  |  |
| Phs Duration (G+Y+Rc), s | 7.4 | 76.0 | 8.6 | 28.0 | 9.8 | 73.5 | 8.3 | 28.3 |  |  |  |  |
| Change Period ( $\mathrm{Y}+\mathrm{Rc}$ ), s | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 |  |  |  |  |
| Max Green Setting (Gmax), s | 7.5 | 42.5 | 8.5 | 43.5 | 13.5 | 36.5 | 7.5 | 44.5 |  |  |  |  |
| Max Q Clear Time (g_c+11), s | 2.7 | 2.0 | 4.8 | 21.1 | 5.3 | 9.3 | 4.3 | 20.5 |  |  |  |  |
| Green Ext Time (p_c), s | 0.0 | 0.8 | 0.0 | 2.4 | 0.2 | 1.3 | 0.0 | 1.9 |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| HCM 6th Ctrl Delay |  |  | 32.9 |  |  |  |  |  |  |  |  |  |
| HCM 6th LOS |  |  | C |  |  |  |  |  |  |  |  |  |


|  | 4 | $\rightarrow$ | 7 |  | 4 | $\dagger$ | ( | $\downarrow$ | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Group | EBL | EBT | WBL | WBT | NBL | NBT | SBL | SBT | SBR |
| Lane Group Flow (vph) | 32 | 103 | 38 | 51 | 67 | 284 | 34 | 260 | 69 |
| v/c Ratio | 0.17 | 0.57 | 0.22 | 0.31 | 0.08 | 0.11 | 0.04 | 0.20 | 0.06 |
| Control Delay | 41.6 | 41.9 | 40.9 | 34.4 | 4.9 | 6.6 | 4.3 | 6.4 | 1.2 |
| Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | 0.0 |
| Total Delay | 41.6 | 41.9 | 40.9 | 34.4 | 4.9 | 6.6 | 4.3 | 6.9 | 1.2 |
| Queue Length 50th (ft) | 21 | 42 | 25 | 21 | 12 | 35 | 3 | 39 | 0 |
| Queue Length 95th (ft) | 47 | 96 | 52 | 60 | 30 | 63 | 16 | 98 | 1 |
| Internal Link Dist (ft) |  | 337 |  | 294 |  | 318 |  | 200 |  |
| Turn Bay Length (ft) | 130 |  | 130 |  | 90 |  | 50 |  |  |
| Base Capacity (vph) | 219 | 441 | 199 | 429 | 903 | 2502 | 879 | 1308 | 1140 |
| Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 662 | 0 |
| Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Reduced v/c Ratio | 0.15 | 0.23 | 0.19 | 0.12 | 0.07 | 0.11 | 0.04 | 0.40 | 0.06 |

[^10]|  | 4 | $\rightarrow$ | $\checkmark$ | 7 | 4 |  | 4 | $\dagger$ | $p$ |  | $\dagger$ | $\downarrow$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | ${ }^{7}$ | $\uparrow$ |  | ${ }^{1}$ | F |  | ${ }^{7}$ | 中 ${ }^{\text {a }}$ |  | ${ }^{7}$ | 4 | 7 |
| Traffic Volume (veh/h) | 29 | 42 | 50 | 34 | 25 | 21 | 60 | 210 | 46 | 31 | 234 | 62 |
| Future Volume (veh/h) | 29 | 42 | 50 | 34 | 25 | 21 | 60 | 210 | 46 | 31 | 234 | 62 |
| Initial $Q(Q b)$, veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Ped-Bike Adj(A_pbT) | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 |
| Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Work Zone On Approach |  | No |  |  | No |  |  | No |  |  | No |  |
| Adj Sat Flow, veh/h/ln | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 |
| Adj Flow Rate, veh/h | 32 | 47 | 56 | 38 | 28 | 23 | 67 | 233 | 51 | 34 | 260 | 69 |
| Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
| Percent Heavy Veh, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Cap, veh/h | 182 | 62 | 74 | 140 | 78 | 64 | 780 | 2072 | 445 | 862 | 1315 | 1114 |
| Arrive On Green | 0.03 | 0.08 | 0.08 | 0.03 | 0.08 | 0.08 | 0.04 | 0.71 | 0.71 | 0.02 | 0.47 | 0.47 |
| Sat Flow, veh/h | 1781 | 777 | 926 | 1781 | 950 | 780 | 1781 | 2910 | 625 | 1781 | 1870 | 1585 |
| Grp Volume(v), veh/h | 32 | 0 | 103 | 38 | 0 | 51 | 67 | 141 | 143 | 34 | 260 | 69 |
| Grp Sat Flow(s),veh/h/ln | 1781 | 0 | 1704 | 1781 | 0 | 1730 | 1781 | 1777 | 1758 | 1781 | 1870 | 1585 |
| Q Serve(g_s), s | 2.0 | 0.0 | 7.1 | 2.3 | 0.0 | 3.3 | 1.2 | 3.0 | 3.1 | 0.6 | 9.7 | 2.8 |
| Cycle Q Clear(g_c), s | 2.0 | 0.0 | 7.1 | 2.3 | 0.0 | 3.3 | 1.2 | 3.0 | 3.1 | 0.6 | 9.7 | 2.8 |
| Prop In Lane | 1.00 |  | 0.54 | 1.00 |  | 0.45 | 1.00 |  | 0.36 | 1.00 |  | 1.00 |
| Lane Grp Cap(c), veh/h | 182 | 0 | 136 | 140 | 0 | 143 | 780 | 1265 | 1252 | 862 | 1315 | 1114 |
| V/C Ratio(X) | 0.18 | 0.00 | 0.76 | 0.27 | 0.00 | 0.36 | 0.09 | 0.11 | 0.11 | 0.04 | 0.20 | 0.06 |
| Avail Cap(c_a), veh/h | 275 | 0 | 405 | 228 | 0 | 411 | 899 | 1265 | 1252 | 953 | 1315 | 1114 |
| HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.67 | 0.67 | 0.67 |
| Upstream Filter(I) | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.97 | 0.97 | 0.97 |
| Uniform Delay (d), s/veh | 48.7 | 0.0 | 54.1 | 48.8 | 0.0 | 52.1 | 4.6 | 5.4 | 5.4 | 4.5 | 12.0 | 10.2 |
| Incr Delay (d2), s/veh | 0.5 | 0.0 | 8.3 | 1.0 | 0.0 | 1.5 | 0.0 | 0.2 | 0.2 | 0.0 | 0.3 | 0.1 |
| Initial Q Delay(d3),s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| \%ile BackOfQ(50\%),veh/ln | 0.9 | 0.0 | 3.4 | 1.1 | 0.0 | 1.5 | 0.4 | 1.1 | 1.1 | 0.2 | 4.4 | 1.0 |
| Unsig. Movement Delay, s/veh |  |  |  |  |  |  |  |  |  |  |  |  |
| LnGrp Delay(d),s/veh | 49.2 | 0.0 | 62.4 | 49.8 | 0.0 | 53.6 | 4.7 | 5.6 | 5.6 | 4.5 | 12.3 | 10.3 |
| LnGrp LOS | D | A | E | D | A | D | A | A | A | A | B | B |
| Approach Vol, veh/h |  | 135 |  |  | 89 |  |  | 351 |  |  | 363 |  |
| Approach Delay, s/veh |  | 59.3 |  |  | 52.0 |  |  | 5.4 |  |  | 11.2 |  |
| Approach LOS |  | E |  |  | D |  |  | A |  |  | B |  |
| Timer - Assigned Phs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |  |  |  |
| Phs Duration (G+Y+Rc), s | 7.9 | 89.9 | 8.1 | 14.1 | 9.0 | 88.9 | 7.8 | 14.4 |  |  |  |  |
| Change Period ( $\mathrm{Y}+\mathrm{Rc}$ ), s | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 |  |  |  |  |
| Max Green Setting (Gmax), s | 9.5 | 54.5 | 9.5 | 28.5 | 12.5 | 51.5 | 9.5 | 28.5 |  |  |  |  |
| Max Q Clear Time (g_c+11), s | 2.6 | 5.1 | 4.3 | 9.1 | 3.2 | 11.7 | 4.0 | 5.3 |  |  |  |  |
| Green Ext Time (p_c), s | 0.0 | 1.8 | 0.0 | 0.5 | 0.1 | 1.9 | 0.0 | 0.2 |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| HCM 6th Ctrl Delay |  |  | 19.8 |  |  |  |  |  |  |  |  |  |
| HCM 6th LOS |  |  | B |  |  |  |  |  |  |  |  |  |


| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 2.5 |  |  |  |  |  |  |  |  |  |  |  |  |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |  |
| Lane Configurations | ${ }^{*}$ | $\hat{\beta}$ |  | * | $\uparrow$ |  |  | ¢ |  |  | * |  |  |
| Traffic Vol, veh/h | 14 | 103 | 12 | 3 | 48 | 5 | 19 | 0 | 10 | 5 | 0 | 12 |  |
| Future Vol, veh/h | 14 | 103 | 12 | 3 | 48 | 5 | 19 | 0 | 10 | 5 | 0 | 12 |  |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| Sign Control F | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |  |
| RT Channelized | - | - | None |  |
| Storage Length | 0 | - | - | 0 | - | - | - | - | - | - | - | - |  |
| Veh in Median Storage, \# | \# | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |  |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |  |
| Peak Hour Factor | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 75 |  |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |  |
| Mvmt Flow | 19 | 137 | 16 | 4 | 64 | 7 | 25 | 0 | 13 | 7 | 0 | 16 |  |





|  | 4 | $\rightarrow$ | 7 |  | 4 | $\dagger$ |  | $\downarrow$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Group | EBL | EBT | WBL | WBT | NBL | NBT | SBL | SBT |
| Lane Group Flow (vph) | 34 | 31 | 43 | 8 | 38 | 94 | 7 | 143 |
| v/c Ratio | 0.30 | 0.04 | 0.41 | 0.01 | 0.04 | 0.07 | 0.01 | 0.11 |
| Control Delay | 56.2 | 0.1 | 63.4 | 0.0 | 5.0 | 3.8 | 9.0 | 7.6 |
| Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Total Delay | 56.2 | 0.1 | 63.4 | 0.0 | 5.0 | 3.8 | 9.0 | 7.6 |
| Queue Length 50th (ft) | 26 | 0 | 32 | 0 | 7 | 12 | 2 | 35 |
| Queue Length 95th (ft) | 58 | 0 | 69 | 0 | 19 | 32 | 9 | 72 |
| Internal Link Dist (ft) |  | 534 |  | 272 |  | 285 |  | 274 |
| Turn Bay Length (ft) | 115 |  |  |  | 115 |  |  |  |
| Base Capacity (vph) | 361 | 963 | 303 | 1051 | 973 | 1404 | 947 | 1328 |
| Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Reduced v/c Ratio | 0.09 | 0.03 | 0.14 | 0.01 | 0.04 | 0.07 | 0.01 | 0.11 |
| Intersection Summary |  |  |  |  |  |  |  |  |



|  | 4 |  |  | 6 |  | 4 | $\dagger$ | $p$ |  | $\dagger$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Group | EBL | EBT | EBR | WBL | WBT | NBL | NBT | NBR | SBL | SBT |
| Lane Group Flow (vph) | 52 | 442 | 135 | 98 | 588 | 133 | 157 | 74 | 42 | 208 |
| v/c Ratio | 0.29 | 0.66 | 0.21 | 0.35 | 0.82 | 0.27 | 0.21 | 0.11 | 0.08 | 0.33 |
| Control Delay | 19.3 | 35.8 | 3.9 | 20.2 | 42.6 | 18.3 | 22.7 | 1.2 | 22.2 | 32.5 |
| Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.4 | 0.0 | 0.0 | 0.0 |
| Total Delay | 19.3 | 35.8 | 3.9 | 20.2 | 42.6 | 18.4 | 23.2 | 1.2 | 22.2 | 32.5 |
| Queue Length 50th (ft) | 21 | 275 | 0 | 41 | 401 | 46 | 55 | 0 | 18 | 115 |
| Queue Length 95th (ft) | 37 | 334 | 34 | 62 | 477 | 74 | 86 | 5 | 46 | 208 |
| Internal Link Dist (ft) |  | 527 |  |  | 232 |  | 200 |  |  | 299 |
| Turn Bay Length (ft) | 115 |  | 230 | 200 |  | 70 |  | 100 | 50 |  |
| Base Capacity (vph) | 182 | 877 | 817 | 279 | 888 | 507 | 737 | 683 | 526 | 635 |
| Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | 67 | 284 | 0 | 0 | 0 |
| Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Reduced v/c Ratio | 0.29 | 0.50 | 0.17 | 0.35 | 0.66 | 0.30 | 0.35 | 0.11 | 0.08 | 0.33 |

[^11]|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |


|  | 4 | $\longrightarrow$ | 7 |  | 4 | $\dagger$ |  | $\downarrow$ | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Group | EBL | EBT | WBL | WBT | NBL | NBT | SBL | SBT | SBR |
| Lane Group Flow (vph) | 43 | 168 | 81 | 105 | 68 | 328 | 51 | 296 | 59 |
| v/c Ratio | 0.17 | 0.69 | 0.36 | 0.39 | 0.09 | 0.15 | 0.07 | 0.26 | 0.06 |
| Control Delay | 33.9 | 56.9 | 37.6 | 40.3 | 8.1 | 11.3 | 6.9 | 9.9 | 0.6 |
| Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | 0.0 |
| Total Delay | 33.9 | 56.9 | 37.6 | 40.3 | 8.1 | 11.3 | 6.9 | 10.5 | 0.6 |
| Queue Length 50th (ft) | 26 | 109 | 50 | 62 | 16 | 54 | 7 | 62 | 0 |
| Queue Length 95th (ft) | 52 | 175 | 86 | 111 | 39 | 93 | 25 | 127 | 0 |
| Internal Link Dist (ft) |  | 500 |  | 294 |  | 318 |  | 200 |  |
| Turn Bay Length (ft) | 130 |  | 130 |  | 90 |  | 50 |  |  |
| Base Capacity (vph) | 270 | 450 | 251 | 494 | 760 | 2159 | 746 | 1152 | 1015 |
| Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 503 | 0 |
| Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Reduced v/c Ratio | 0.16 | 0.37 | 0.32 | 0.21 | 0.09 | 0.15 | 0.07 | 0.46 | 0.06 |

[^12]|  | 4 | $\rightarrow$ | $\cdots$ | 7 |  | 4 | 4 | 4 | $p$ |  | $\downarrow$ | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | ${ }^{7}$ | $\uparrow$ |  | ${ }^{7}$ | $\uparrow$ |  | ${ }^{7}$ | 中 $\hat{\beta}$ |  | ${ }^{7}$ | 4 | F |
| Traffic Volume (veh/h) | 41 | 102 | 58 | 77 | 70 | 29 | 65 | 266 | 46 | 48 | 281 | 56 |
| Future Volume (veh/h) | 41 | 102 | 58 | 77 | 70 | 29 | 65 | 266 | 46 | 48 | 281 | 56 |
| Initial $Q(Q b)$, veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Ped-Bike Adj(A_pbT) | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 |
| Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Work Zone On Approach |  | No |  |  | No |  |  | No |  |  | No |  |
| Adj Sat Flow, veh/h/ln | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 |
| Adj Flow Rate, veh/h | 43 | 107 | 61 | 81 | 74 | 31 | 68 | 280 | 48 | 51 | 296 | 59 |
| Peak Hour Factor | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 |
| Percent Heavy Veh, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Cap, veh/h | 225 | 131 | 75 | 183 | 173 | 72 | 717 | 1964 | 332 | 762 | 1202 | 1019 |
| Arrive On Green | 0.03 | 0.12 | 0.12 | 0.05 | 0.14 | 0.14 | 0.04 | 0.65 | 0.65 | 0.03 | 0.64 | 0.64 |
| Sat Flow, veh/h | 1781 | 1118 | 637 | 1781 | 1252 | 524 | 1781 | 3040 | 515 | 1781 | 1870 | 1585 |
| Grp Volume(v), veh/h | 43 | 0 | 168 | 81 | 0 | 105 | 68 | 162 | 166 | 51 | 296 | 59 |
| Grp Sat Flow(s), veh/h/ln | 1781 | 0 | 1756 | 1781 | 0 | 1776 | 1781 | 1777 | 1778 | 1781 | 1870 | 1585 |
| Q Serve(g_s), s | 2.5 | 0.0 | 11.2 | 4.7 | 0.0 | 6.5 | 1.5 | 4.3 | 4.4 | 1.1 | 8.1 | 1.7 |
| Cycle Q Clear(g_c), s | 2.5 | 0.0 | 11.2 | 4.7 | 0.0 | 6.5 | 1.5 | 4.3 | 4.4 | 1.1 | 8.1 | 1.7 |
| Prop In Lane | 1.00 |  | 0.36 | 1.00 |  | 0.30 | 1.00 |  | 0.29 | 1.00 |  | 1.00 |
| Lane Grp Cap(c), veh/h | 225 | 0 | 205 | 183 | 0 | 245 | 717 | 1148 | 1149 | 762 | 1202 | 1019 |
| V/C Ratio(X) | 0.19 | 0.00 | 0.82 | 0.44 | 0.00 | 0.43 | 0.09 | 0.14 | 0.14 | 0.07 | 0.25 | 0.06 |
| Avail Cap(c_a), veh/h | 294 | 0 | 432 | 259 | 0 | 481 | 807 | 1148 | 1149 | 828 | 1202 | 1019 |
| HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Upstream Filter(I) | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.97 | 0.97 | 0.97 |
| Uniform Delay (d), s/veh | 44.6 | 0.0 | 51.7 | 43.8 | 0.0 | 47.4 | 6.7 | 8.3 | 8.3 | 6.5 | 9.1 | 8.0 |
| Incr Delay (d2), s/veh | 0.4 | 0.0 | 7.8 | 1.7 | 0.0 | 1.2 | 0.1 | 0.3 | 0.3 | 0.0 | 0.5 | 0.1 |
| Initial Q Delay(d3),s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| \%ile BackOfQ(50\%),veh/ln | 1.2 | 0.0 | 5.4 | 2.2 | 0.0 | 3.0 | 0.6 | 1.7 | 1.7 | 0.4 | 3.3 | 0.6 |
| Unsig. Movement Delay, s/veh |  |  |  |  |  |  |  |  |  |  |  |  |
| LnGrp Delay(d),s/veh | 45.0 | 0.0 | 59.5 | 45.5 | 0.0 | 48.6 | 6.7 | 8.5 | 8.6 | 6.6 | 9.6 | 8.1 |
| LnGrp LOS | D | A | E | D | A | D | A | A | A | A | A | A |
| Approach Vol, veh/h |  | 211 |  |  | 186 |  |  | 396 |  |  | 406 |  |
| Approach Delay, s/veh |  | 56.6 |  |  | 47.2 |  |  | 8.2 |  |  | 9.0 |  |
| Approach LOS |  | E |  |  | D |  |  | A |  |  | A |  |
| Timer - Assigned Phs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |  |  |  |
| Phs Duration ( $G+Y+R \mathrm{c}$ ), s | 8.6 | 82.0 | 10.8 | 18.5 | 9.0 | 81.6 | 8.3 | 21.1 |  |  |  |  |
| Change Period ( $\mathrm{Y}+\mathrm{Rc}$ ), s | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 |  |  |  |  |
| Max Green Setting (Gmax), s | 8.5 | 52.5 | 11.5 | 29.5 | 10.5 | 50.5 | 8.5 | 32.5 |  |  |  |  |
| Max Q Clear Time (g_c+11), s | 3.1 | 6.4 | 6.7 | 13.2 | 3.5 | 10.1 | 4.5 | 8.5 |  |  |  |  |
| Green Ext Time (p_c), s | 0.0 | 2.1 | 0.1 | 0.8 | 0.1 | 2.1 | 0.0 | 0.5 |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| HCM 6th Ctrl Delay |  |  | 23.0 |  |  |  |  |  |  |  |  |  |
| HCM 6th LOS |  |  | C |  |  |  |  |  |  |  |  |  |






5: Roeland Dr \& Martway St/Mission Gateway Dr

|  | 4 |  | 7 |  | 4 | $\dagger$ |  | $\downarrow$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Group | EBL | EBT | WBL | WBT | NBL | NBT | SBL | SBT |
| Lane Group Flow (vph) | 58 | 82 | 41 | 12 | 49 | 104 | 7 | 142 |
| v/c Ratio | 0.42 | 0.09 | 0.41 | 0.01 | 0.05 | 0.08 | 0.01 | 0.12 |
| Control Delay | 56.0 | 0.2 | 63.8 | 0.0 | 5.7 | 4.6 | 10.2 | 8.6 |
| Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Total Delay | 56.0 | 0.2 | 63.8 | 0.0 | 5.7 | 4.6 | 10.2 | 8.6 |
| Queue Length 50th (ft) | 44 | 0 | 31 | 0 | 9 | 16 | 2 | 35 |
| Queue Length 95th (ft) | 85 | 0 | 67 | 0 | 25 | 40 | 9 | 76 |
| Internal Link Dist (ft) |  | 534 |  | 206 |  | 320 |  | 274 |
| Turn Bay Length (ft) | 115 |  |  |  | 115 |  |  |  |
| Base Capacity (vph) | 390 | 989 | 278 | 1003 | 942 | 1345 | 867 | 1213 |
| Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Reduced v/c Ratio | 0.15 | 0.08 | 0.15 | 0.01 | 0.05 | 0.08 | 0.01 | 0.12 |
| Intersection Summary |  |  |  |  |  |  |  |  |


|  | 4 |  | $\checkmark$ | $\checkmark$ |  | 4 | 4 | $\dagger$ | $p$ |  | $\dagger$ | $\downarrow$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | ${ }^{7}$ | $\uparrow$ |  | ${ }^{7}$ | $\uparrow$ |  | ${ }^{7}$ | $\uparrow$ |  | ${ }^{*}$ | $\hat{\beta}$ |  |
| Traffic Volume (veh/h) | 56 | 0 | 80 | 38 | 0 | 11 | 48 | 74 | 26 | 6 | 103 | 35 |
| Future Volume (veh/h) | 56 | 0 | 80 | 38 | 0 | 11 | 48 | 74 | 26 | 6 | 103 | 35 |
| Initial $Q(Q b)$, veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Ped-Bike Adj(A_pbT) | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 |
| Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Work Zone On Approach |  | No |  |  | No |  |  | No |  |  | No |  |
| Adj Sat Flow, veh/h/ln | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 |
| Adj Flow Rate, veh/h | 58 | 0 | 82 | 41 | 0 | 12 | 49 | 76 | 28 | 7 | 106 | 36 |
| Peak Hour Factor | 0.97 | 0.92 | 0.97 | 0.92 | 0.92 | 0.92 | 0.97 | 0.97 | 0.92 | 0.92 | 0.97 | 0.97 |
| Percent Heavy Veh, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Cap, veh/h | 127 | 0 | 113 | 62 | 0 | 55 | 974 | 1019 | 375 | 977 | 949 | 322 |
| Arrive On Green | 0.07 | 0.00 | 0.07 | 0.03 | 0.00 | 0.03 | 0.03 | 0.78 | 0.78 | 0.71 | 0.71 | 0.71 |
| Sat Flow, veh/h | 1781 | 0 | 1585 | 1781 | 0 | 1585 | 1781 | 1304 | 480 | 1290 | 1335 | 453 |
| Grp Volume(v), veh/h | 58 | 0 | 82 | 41 | 0 | 12 | 49 | 0 | 104 | 7 | 0 | 142 |
| Grp Sat Flow(s), veh/h/ln | 1781 | 0 | 1585 | 1781 | 0 | 1585 | 1781 | 0 | 1784 | 1290 | 0 | 1789 |
| Q Serve(g_s), s | 3.8 | 0.0 | 6.1 | 2.7 | 0.0 | 0.9 | 0.8 | 0.0 | 1.6 | 0.2 | 0.0 | 3.0 |
| Cycle Q Clear(g_c), s | 3.8 | 0.0 | 6.1 | 2.7 | 0.0 | 0.9 | 0.8 | 0.0 | 1.6 | 0.2 | 0.0 | 3.0 |
| Prop In Lane | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 0.27 | 1.00 |  | 0.25 |
| Lane Grp Cap(c), veh/h | 127 | 0 | 113 | 62 | 0 | 55 | 974 | 0 | 1394 | 977 | 0 | 1271 |
| V/C Ratio(X) | 0.46 | 0.00 | 0.73 | 0.67 | 0.00 | 0.22 | 0.05 | 0.00 | 0.07 | 0.01 | 0.00 | 0.11 |
| Avail Cap(c_a), veh/h | 393 | 0 | 350 | 379 | 0 | 337 | 1100 | 0 | 1394 | 977 | 0 | 1271 |
| HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Upstream Filter(I) | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 |
| Uniform Delay (d), s/veh | 53.5 | 0.0 | 54.6 | 57.2 | 0.0 | 56.4 | 3.6 | 0.0 | 3.0 | 5.1 | 0.0 | 5.5 |
| Incr Delay (d2), s/veh | 2.6 | 0.0 | 8.5 | 11.7 | 0.0 | 2.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.2 |
| Initial Q Delay(d3),s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| \%ile BackOfQ(50\%),veh/In | 1.8 | 0.0 | 2.7 | 1.4 | 0.0 | 0.4 | 0.3 | 0.0 | 0.5 | 0.1 | 0.0 | 1.1 |
| Unsig. Movement Delay, s/veh |  |  |  |  |  |  |  |  |  |  |  |  |
| LnGrp Delay(d),s/veh | 56.0 | 0.0 | 63.1 | 68.9 | 0.0 | 58.3 | 3.7 | 0.0 | 3.1 | 5.1 | 0.0 | 5.6 |
| LnGrp LOS | E | A | E | E | A | E | A | A | A | A | A | A |
| Approach Vol, veh/h |  | 140 |  |  | 53 |  |  | 153 |  |  | 149 |  |
| Approach Delay, s/veh |  | 60.2 |  |  | 66.5 |  |  | 3.3 |  |  | 5.6 |  |
| Approach LOS |  | E |  |  | E |  |  | A |  |  | A |  |
| Timer - Assigned Phs |  | 2 |  | 4 | 5 | 6 |  | 8 |  |  |  |  |
| Phs Duration ( $\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$ ), s |  | 98.3 |  | 13.1 | 8.5 | 89.8 |  | 8.6 |  |  |  |  |
| Change Period ( $\mathrm{Y}+\mathrm{Rc}$ ), s |  | 4.5 |  | 4.5 | 4.5 | 4.5 |  | 4.5 |  |  |  |  |
| Max Green Setting (Gmax), s |  | 54.5 |  | 26.5 | 12.5 | 37.5 |  | 25.5 |  |  |  |  |
| Max Q Clear Time (g_c+11), s |  | 3.6 |  | 8.1 | 2.8 | 5.0 |  | 4.7 |  |  |  |  |
| Green Ext Time (p_c), s |  | 0.6 |  | 0.6 | 0.0 | 0.8 |  | 0.1 |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| HCM 6th Ctrl Delay |  |  | 26.9 |  |  |  |  |  |  |  |  |  |
| HCM 6th LOS |  |  | C |  |  |  |  |  |  |  |  |  |


|  | $\Rightarrow$ | $\rightarrow$ | 7 | $\dagger$ |  | 4 | $\uparrow$ | $p$ |  | $\downarrow$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Group | EBL | EBT | EBR | WBL | WBT | NBL | NBT | NBR | SBL | SBT |
| Lane Group Flow (vph) | 48 | 334 | 153 | 57 | 326 | 129 | 109 | 71 | 28 | 244 |
| $\mathrm{v} / \mathrm{C}$ Ratio | 0.24 | 0.78 | 0.32 | 0.29 | 0.74 | 0.20 | 0.11 | 0.08 | 0.04 | 0.27 |
| Control Delay | 28.1 | 55.2 | 6.8 | 29.3 | 51.8 | 10.8 | 13.3 | 0.9 | 12.8 | 20.4 |
| Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Total Delay | 28.1 | 55.2 | 6.8 | 29.3 | 51.8 | 10.8 | 13.3 | 0.9 | 12.8 | 20.4 |
| Queue Length 50th (ft) | 25 | 243 | 0 | 30 | 232 | 35 | 31 | 0 | 9 | 104 |
| Queue Length 95th (ft) | 48 | 317 | 48 | 55 | 304 | 59 | 53 | 2 | 26 | 198 |
| Internal Link Dist (ft) |  | 382 |  |  | 372 |  | 200 |  |  | 299 |
| Turn Bay Length (ft) | 115 |  | 230 | 200 |  | 70 |  | 100 | 50 |  |
| Base Capacity (vph) | 202 | 675 | 671 | 203 | 687 | 674 | 1038 | 924 | 737 | 898 |
| Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Reduced v/c Ratio | 0.24 | 0.49 | 0.23 | 0.28 | 0.47 | 0.19 | 0.11 | 0.08 | 0.04 | 0.27 |

[^13]|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |


|  | 4 | $\rightarrow$ | 7 |  | 4 | 4 |  | $\dagger$ | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Group | EBL | EBT | WBL | WBT | NBL | NBT | SBL | SBT | SBR |
| Lane Group Flow (vph) | 34 | 111 | 40 | 56 | 73 | 314 | 38 | 286 | 76 |
| v/c Ratio | 0.16 | 0.59 | 0.22 | 0.27 | 0.09 | 0.13 | 0.05 | 0.23 | 0.07 |
| Control Delay | 39.9 | 43.9 | 38.7 | 30.9 | 5.4 | 7.3 | 4.7 | 7.1 | 1.3 |
| Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | 0.0 |
| Total Delay | 39.9 | 43.9 | 38.7 | 30.9 | 5.4 | 7.3 | 4.7 | 7.7 | 1.3 |
| Queue Length 50th (ft) | 22 | 49 | 26 | 22 | 13 | 40 | 4 | 44 | 0 |
| Queue Length 95th (ft) | 48 | 105 | 54 | 61 | 33 | 72 | 18 | 109 | 0 |
| Internal Link Dist (ft) |  | 337 |  | 294 |  | 318 |  | 200 |  |
| Turn Bay Length (ft) | 130 |  | 130 |  | 90 |  | 50 |  |  |
| Base Capacity (vph) | 241 | 427 | 207 | 416 | 841 | 2418 | 831 | 1261 | 1102 |
| Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 618 | 0 |
| Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Reduced v/c Ratio | 0.14 | 0.26 | 0.19 | 0.13 | 0.09 | 0.13 | 0.05 | 0.44 | 0.07 |

[^14]|  | 4 | $\rightarrow$ | 7 | 7 |  | 4 | 4 | $\dagger$ | 7 |  | $\dagger$ | $\pm$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | ${ }^{*}$ | $\uparrow$ |  | ${ }^{1}$ | $\uparrow$ |  | ${ }^{7}$ | 中 ${ }^{\text {a }}$ |  | ${ }^{1}$ | 4 | 「 |
| Traffic Volume (veh/h) | 31 | 46 | 54 | 36 | 27 | 23 | 66 | 231 | 51 | 34 | 257 | 68 |
| Future Volume (veh/h) | 31 | 46 | 54 | 36 | 27 | 23 | 66 | 231 | 51 | 34 | 257 | 68 |
| Initial $Q(Q b)$, veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Ped-Bike Adj(A_pbT) | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 |
| Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Work Zone On Approach |  | No |  |  | No |  |  | No |  |  | No |  |
| Adj Sat Flow, veh/h/ln | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 |
| Adj Flow Rate, veh/h | 34 | 51 | 60 | 40 | 30 | 26 | 73 | 257 | 57 | 38 | 286 | 76 |
| Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
| Percent Heavy Veh, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Cap, veh/h | 186 | 66 | 78 | 141 | 80 | 70 | 782 | 2045 | 446 | 833 | 1303 | 1104 |
| Arrive On Green | 0.03 | 0.08 | 0.08 | 0.03 | 0.09 | 0.09 | 0.04 | 0.70 | 0.70 | 0.03 | 0.70 | 0.70 |
| Sat Flow, veh/h | 1781 | 783 | 921 | 1781 | 925 | 801 | 1781 | 2901 | 632 | 1781 | 1870 | 1585 |
| Grp Volume(v), veh/h | 34 | 0 | 111 | 40 | 0 | 56 | 73 | 156 | 158 | 38 | 286 | 76 |
| Grp Sat Flow(s), veh/h/ln | 1781 | 0 | 1705 | 1781 | 0 | 1726 | 1781 | 1777 | 1757 | 1781 | 1870 | 1585 |
| Q Serve(g_s), s | 2.1 | 0.0 | 7.7 | 2.4 | 0.0 | 3.7 | 1.4 | 3.4 | 3.5 | 0.7 | 6.6 | 1.8 |
| Cycle Q Clear(g_c), s | 2.1 | 0.0 | 7.7 | 2.4 | 0.0 | 3.7 | 1.4 | 3.4 | 3.5 | 0.7 | 6.6 | 1.8 |
| Prop In Lane | 1.00 |  | 0.54 | 1.00 |  | 0.46 | 1.00 |  | 0.36 | 1.00 |  | 1.00 |
| Lane Grp Cap(c), veh/h | 186 | 0 | 144 | 141 | 0 | 150 | 782 | 1252 | 1238 | 833 | 1303 | 1104 |
| V/C Ratio(X) | 0.18 | 0.00 | 0.77 | 0.28 | 0.00 | 0.37 | 0.09 | 0.12 | 0.13 | 0.05 | 0.22 | 0.07 |
| Avail Cap(c_a), veh/h | 277 | 0 | 391 | 228 | 0 | 396 | 885 | 1252 | 1238 | 921 | 1303 | 1104 |
| HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Upstream Filter(I) | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.97 | 0.97 | 0.97 |
| Uniform Delay (d), s/veh | 48.2 | 0.0 | 53.8 | 48.3 | 0.0 | 51.7 | 4.6 | 5.7 | 5.7 | 4.6 | 6.5 | 5.8 |
| Incr Delay (d2), s/veh | 0.5 | 0.0 | 8.3 | 1.1 | 0.0 | 1.5 | 0.1 | 0.2 | 0.2 | 0.0 | 0.4 | 0.1 |
| Initial Q Delay(d3),s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| \%ile BackOfQ(50\%),veh/ln | 1.0 | 0.0 | 3.6 | 1.1 | 0.0 | 1.7 | 0.5 | 1.3 | 1.3 | 0.2 | 2.6 | 0.6 |
| Unsig. Movement Delay, s/veh |  |  |  |  |  |  |  |  |  |  |  |  |
| LnGrp Delay(d),s/veh | 48.7 | 0.0 | 62.1 | 49.4 | 0.0 | 53.2 | 4.6 | 5.9 | 6.0 | 4.6 | 6.9 | 5.9 |
| LnGrp LOS | D | A | E | D | A | D | A | A | A | A | A | A |
| Approach Vol, veh/h |  | 145 |  |  | 96 |  |  | 387 |  |  | 400 |  |
| Approach Delay, s/veh |  | 59.0 |  |  | 51.6 |  |  | 5.7 |  |  | 6.5 |  |
| Approach LOS |  | E |  |  | D |  |  | A |  |  | A |  |
| Timer - Assigned Phs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |  |  |  |
| Phs Duration ( $\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$ ), s | 8.1 | 89.1 | 8.2 | 14.7 | 9.1 | 88.1 | 7.9 | 14.9 |  |  |  |  |
| Change Period (Y+Rc), s | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 |  |  |  |  |
| Max Green Setting (Gmax), s | 9.5 | 55.5 | 9.5 | 27.5 | 11.5 | 53.5 | 9.5 | 27.5 |  |  |  |  |
| Max Q Clear Time (g_c+11), s | 2.7 | 5.5 | 4.4 | 9.7 | 3.4 | 8.6 | 4.1 | 5.7 |  |  |  |  |
| Green Ext Time (p_c), s | 0.0 | 2.0 | 0.0 | 0.5 | 0.1 | 2.1 | 0.0 | 0.2 |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| HCM 6th Ctrl Delay |  |  | 17.8 |  |  |  |  |  |  |  |  |  |
| HCM 6th LOS |  |  | B |  |  |  |  |  |  |  |  |  |






5: Roeland Dr \& Martway St/Mission Gateway Dr

|  | 4 | $\rightarrow$ | 7 |  | 4 | $\dagger$ |  | $\downarrow$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Group | EBL | EBT | WBL | WBT | NBL | NBT | SBL | SBT |
| Lane Group Flow (vph) | 37 | 33 | 43 | 8 | 42 | 99 | 7 | 154 |
| v/c Ratio | 0.31 | 0.04 | 0.41 | 0.01 | 0.04 | 0.07 | 0.01 | 0.12 |
| Control Delay | 56.1 | 0.1 | 63.5 | 0.0 | 5.1 | 4.0 | 9.3 | 8.1 |
| Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Total Delay | 56.1 | 0.1 | 63.5 | 0.0 | 5.1 | 4.0 | 9.3 | 8.1 |
| Queue Length 50th (ft) | 28 | 0 | 32 | 0 | 7 | 14 | 2 | 38 |
| Queue Length 95th (ft) | 62 | 0 | 69 | 0 | 20 | 35 | 9 | 78 |
| Internal Link Dist (ft) |  | 534 |  | 272 |  | 285 |  | 274 |
| Turn Bay Length (ft) | 115 |  |  |  | 115 |  |  |  |
| Base Capacity (vph) | 346 | 949 | 302 | 1040 | 963 | 1405 | 918 | 1293 |
| Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Reduced v/c Ratio | 0.11 | 0.03 | 0.14 | 0.01 | 0.04 | 0.07 | 0.01 | 0.12 |
| Intersection Summary |  |  |  |  |  |  |  |  |


|  | $\rangle$ |  |  | 7 |  |  | 4 | 4 | $p$ |  | $\downarrow$ | $\downarrow$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | ${ }_{7}$ | $\hat{\square}$ |  | ${ }^{*}$ | $\uparrow$ |  | \% | $\uparrow$ |  | ${ }_{1}$ | $\uparrow$ |  |
| Traffic Volume (veh/h) | 33 | 0 | 29 | 40 | O | 7 | 37 | 63 | 26 | 6 | 113 | 24 |
| Future Volume (veh/h) | 33 | 0 | 29 | 40 | 0 | 7 | 37 | 63 | 26 | 6 | 113 | 24 |
| Initial $Q(Q b)$, veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Ped-Bike Adj(A_pbT) | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 |
| Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Work Zone On Approach |  | No |  |  | No |  |  | No |  |  | No |  |
| Adj Sat Flow, veh/h/ln | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 |
| Adj Flow Rate, veh/h | 37 | 0 | 33 | 43 | 0 | 8 | 42 | 71 | 28 | 7 | 127 | 27 |
| Peak Hour Factor | 0.89 | 0.92 | 0.89 | 0.92 | 0.92 | 0.92 | 0.89 | 0.89 | 0.92 | 0.92 | 0.89 | 0.89 |
| Percent Heavy Veh, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Cap, veh/h | 67 | 0 | 60 | 61 | 0 | 54 | 1008 | 1041 | 411 | 1028 | 1117 | 237 |
| Arrive On Green | 0.04 | 0.00 | 0.04 | 0.03 | 0.00 | 0.03 | 0.03 | 0.82 | 0.82 | 0.75 | 0.75 | 0.75 |
| Sat Flow, veh/h | 1781 | 0 | 1585 | 1781 | 0 | 1585 | 1781 | 1276 | 503 | 1296 | 1495 | 318 |
| Grp Volume(v), veh/h | 37 | 0 | 33 | 43 | 0 | 8 | 42 | 0 | 99 | 7 | 0 | 154 |
| Grp Sat Flow(s),veh/h/n | 1781 | 0 | 1585 | 1781 | 0 | 1585 | 1781 | 0 | 1780 | 1296 | 0 | 1813 |
| Q Serve(g_s), s | 2.4 | 0.0 | 2.5 | 2.9 | 0.0 | 0.6 | 0.6 | 0.0 | 1.3 | 0.2 | 0.0 | 2.8 |
| Cycle Q Clear(g_c), s | 2.4 | 0.0 | 2.5 | 2.9 | 0.0 | 0.6 | 0.6 | 0.0 | 1.3 | 0.2 | 0.0 | 2.8 |
| Prop In Lane | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 0.28 | 1.00 |  | 0.18 |
| Lane Grp Cap (c), veh/h | 67 | 0 | 60 | 61 | 0 | 54 | 1008 | 0 | 1452 | 1028 | 0 | 1354 |
| V/C Ratio(X) | 0.55 | 0.00 | 0.55 | 0.71 | 0.00 | 0.15 | 0.04 | 0.00 | 0.07 | 0.01 | 0.00 | 0.11 |
| Avail Cap(c_a), veh/h | 349 | 0 | 310 | 393 | 0 | 350 | 1123 | 0 | 1452 | 1028 | 0 | 1354 |
| HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Upstream Filter(l) | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 |
| Uniform Delay (d), s/veh | 56.7 | 0.0 | 56.8 | 57.4 | 0.0 | 56.3 | 2.7 | 0.0 | 2.2 | 3.9 | 0.0 | 4.2 |
| Incr Delay (d2), s/veh | 6.9 | 0.0 | 7.8 | 14.1 | 0.0 | 1.2 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.2 |
| Initial Q Delay(d3),s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| \%ile BackOfQ(50\%),veh/ln | 1.2 | 0.0 | 1.1 | 1.5 | 0.0 | 0.3 | 0.2 | 0.0 | 0.4 | 0.0 | 0.0 | 1.0 |
| Unsig. Movement Delay, s/veh |  |  |  |  |  |  |  |  |  |  |  |  |
| LnGrp Delay (d),s/veh | 63.7 | 0.0 | 64.5 | 71.5 | 0.0 | 57.5 | 2.7 | 0.0 | 2.2 | 3.9 | 0.0 | 4.4 |
| LnGrp LOS | E | A | E | E | A | E | A | A | A | A | A | A |
| Approach Vol, veh/h |  | 70 |  |  | 51 |  |  | 141 |  |  | 161 |  |
| Approach Delay, s/veh |  | 64.1 |  |  | 69.3 |  |  | 2.4 |  |  | 4.3 |  |
| Approach LOS |  | E |  |  | E |  |  | A |  |  | A |  |
| Timer - Assigned Phs |  | 2 |  | 4 | 5 | 6 |  | 8 |  |  |  |  |
| Phs Duration ( $\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$ ), s |  | 102.4 |  | 9.0 | 8.3 | 94.1 |  | 8.6 |  |  |  |  |
| Change Period ( $Y+\mathrm{Rc}$ ), s |  | 4.5 |  | 4.5 | 4.5 | 4.5 |  | 4.5 |  |  |  |  |
| Max Green Setting (Gmax), s |  | 56.5 |  | 23.5 | 11.5 | 40.5 |  | 26.5 |  |  |  |  |
| Max Q Clear Time (g_c+11), s |  | 3.3 |  | 4.5 | 2.6 | 4.8 |  | 4.9 |  |  |  |  |
| Green Ext Time (p_c), s |  | 0.6 |  | 0.2 | 0.0 | 0.9 |  | 0.1 |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| HCM 6th Ctrr DelayHCM 6th LOS |  |  | 21.4 |  |  |  |  |  |  |  |  |  |
|  |  |  | C |  |  |  |  |  |  |  |  |  |


|  | $\stackrel{ }{*}$ | $\rightarrow$ | \% | $\downarrow$ |  | 4 | $\dagger$ | $>$ |  | $\downarrow$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Group | EBL | EBT | EBR | WBL | WBT | NBL | NBT | NBR | SBL | SBT |
| Lane Group Flow (vph) | 57 | 482 | 148 | 108 | 642 | 145 | 172 | 80 | 47 | 228 |
| v/c Ratio | 0.33 | 0.68 | 0.21 | 0.39 | 0.85 | 0.32 | 0.25 | 0.12 | 0.10 | 0.39 |
| Control Delay | 19.2 | 34.7 | 3.6 | 19.5 | 42.8 | 20.2 | 23.8 | 1.6 | 23.9 | 36.0 |
| Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.5 | 0.0 | 0.0 | 0.0 |
| Total Delay | 19.2 | 34.7 | 3.6 | 19.5 | 42.8 | 20.3 | 24.2 | 1.6 | 23.9 | 36.0 |
| Queue Length 50th ( t ) | 22 | 293 | 0 | 43 | 434 | 51 | 61 | 0 | 21 | 136 |
| Queue Length 95th (ft) | 39 | 364 | 35 | 65 | 531 | 81 | 92 | 7 | 51 | 233 |
| Internal Link Dist (ft) |  | 527 |  |  | 232 |  | 200 |  |  | 299 |
| Turn Bay Length (ft) | 115 |  | 230 | 200 |  | 70 |  | 100 | 50 |  |
| Base Capacity (vph) | 174 | 877 | 823 | 280 | 888 | 464 | 695 | 650 | 484 | 584 |
| Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | 30 | 244 | 0 | 0 | 0 |
| Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Reduced v/c Ratio | 0.33 | 0.55 | 0.18 | 0.39 | 0.72 | 0.33 | 0.38 | 0.12 | 0.10 | 0.39 |

[^15]|  | 4 | $\rightarrow$ | 7 | 7 |  | 4 | 4 | 4 | 7 | ( | $\ddagger$ | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | ${ }^{1}$ | 4 | 「 | ${ }^{1 /}$ | $\uparrow$ |  | \% | 4 | 「' | ${ }^{1 /}$ | $\uparrow$ |  |
| Traffic Volume (veh/h) | 52 | 443 | 136 | 99 | 569 | 22 | 133 | 158 | 74 | 43 | 159 | 51 |
| Future Volume (veh/h) | 52 | 443 | 136 | 99 | 569 | 22 | 133 | 158 | 74 | 43 | 159 | 51 |
| Initial $Q(Q b)$, veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Ped-Bike Adj(A_pbT) | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 |
| Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Work Zone On Approach |  | No |  |  | No |  |  | No |  |  | No |  |
| Adj Sat Flow, veh/h/ln | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 |
| Adj Flow Rate, veh/h | 57 | 482 | 148 | 108 | 618 | 24 | 145 | 172 | 80 | 47 | 173 | 55 |
| Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Percent Heavy Veh, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Cap, veh/h | 164 | 677 | 574 | 266 | 679 | 26 | 497 | 752 | 637 | 532 | 501 | 159 |
| Arrive On Green | 0.04 | 0.36 | 0.36 | 0.05 | 0.38 | 0.38 | 0.11 | 0.67 | 0.67 | 0.03 | 0.37 | 0.37 |
| Sat Flow, veh/h | 1781 | 1870 | 1585 | 1781 | 1788 | 69 | 1781 | 1870 | 1585 | 1781 | 1360 | 432 |
| Grp Volume(v), veh/h | 57 | 482 | 148 | 108 | 0 | 642 | 145 | 172 | 80 | 47 | 0 | 228 |
| Grp Sat Flow(s), veh/h/ln | 1781 | 1870 | 1585 | 1781 | 0 | 1858 | 1781 | 1870 | 1585 | 1781 | 0 | 1793 |
| Q Serve(g_s), s | 2.4 | 26.6 | 7.9 | 4.5 | 0.0 | 39.3 | 5.9 | 4.3 | 2.2 | 1.9 | 0.0 | 11.0 |
| Cycle Q Clear(g_c), s | 2.4 | 26.6 | 7.9 | 4.5 | 0.0 | 39.3 | 5.9 | 4.3 | 2.2 | 1.9 | 0.0 | 11.0 |
| Prop In Lane | 1.00 |  | 1.00 | 1.00 |  | 0.04 | 1.00 |  | 1.00 | 1.00 |  | 0.24 |
| Lane Grp Cap(c), veh/h | 164 | 677 | 574 | 266 | 0 | 705 | 497 | 752 | 637 | 532 | 0 | 660 |
| V/C Ratio(X) | 0.35 | 0.71 | 0.26 | 0.41 | 0.00 | 0.91 | 0.29 | 0.23 | 0.13 | 0.09 | 0.00 | 0.35 |
| Avail Cap(c_a), veh/h | 186 | 881 | 746 | 271 | 0 | 890 | 555 | 752 | 637 | 549 | 0 | 660 |
| HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.67 | 1.67 | 1.67 | 1.00 | 1.00 | 1.00 |
| Upstream Filter(l) | 1.00 | 1.00 | 1.00 | 1.00 | 0.00 | 1.00 | 0.99 | 0.99 | 0.99 | 1.00 | 0.00 | 1.00 |
| Uniform Delay (d), s/veh | 28.7 | 32.9 | 26.9 | 25.3 | 0.0 | 35.3 | 19.7 | 12.5 | 12.2 | 22.1 | 0.0 | 27.4 |
| Incr Delay (d2), s/veh | 1.3 | 1.9 | 0.2 | 1.0 | 0.0 | 11.4 | 0.3 | 0.7 | 0.4 | 0.1 | 0.0 | 1.4 |
| Initial Q Delay(d3),s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| \%ile BackOfQ(50\%),veh/In | 1.1 | 12.4 | 3.1 | 2.0 | 0.0 | 19.9 | 2.4 | 1.8 | 0.9 | 0.8 | 0.0 | 5.0 |
| Unsig. Movement Delay, s/veh |  |  |  |  |  |  |  |  |  |  |  |  |
| LnGrp Delay(d),s/veh | 30.0 | 34.8 | 27.2 | 26.3 | 0.0 | 46.7 | 20.0 | 13.2 | 12.6 | 22.2 | 0.0 | 28.9 |
| LnGrp LOS | C | C | C | C | A | D | C | B | B | C | A | C |
| Approach Vol, veh/h |  | 687 |  |  | 750 |  |  | 397 |  |  | 275 |  |
| Approach Delay, s/veh |  | 32.7 |  |  | 43.7 |  |  | 15.6 |  |  | 27.7 |  |
| Approach LOS |  | C |  |  | D |  |  | B |  |  | C |  |
| Timer - Assigned Phs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |  |  |  |
| Phs Duration (G+Y+Rc), s | 8.5 | 52.7 | 10.9 | 48.0 | 12.5 | 48.7 | 8.8 | 50.1 |  |  |  |  |
| Change Period ( $\mathrm{Y}+\mathrm{Rc}$ ), s | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 |  |  |  |  |
| Max Green Setting (Gmax), s | 5.1 | 33.7 | 6.7 | 56.5 | 11.9 | 26.9 | 5.7 | 57.5 |  |  |  |  |
| Max Q Clear Time (g_c+11), s | 3.9 | 6.3 | 6.5 | 28.6 | 7.9 | 13.0 | 4.4 | 41.3 |  |  |  |  |
| Green Ext Time (p_c), s | 0.0 | 1.2 | 0.0 | 4.0 | 0.1 | 1.0 | 0.0 | 4.2 |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| HCM 6th Ctrl Delay |  |  | 32.8 |  |  |  |  |  |  |  |  |  |
| HCM 6th LOS |  |  | C |  |  |  |  |  |  |  |  |  |


|  | 4 | $\longrightarrow$ | 7 |  | 4 | $\dagger$ |  | $\downarrow$ | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Group | EBL | EBT | WBL | WBT | NBL | NBT | SBL | SBT | SBR |
| Lane Group Flow (vph) | 47 | 184 | 88 | 115 | 75 | 360 | 55 | 325 | 65 |
| v/c Ratio | 0.17 | 0.70 | 0.37 | 0.35 | 0.11 | 0.18 | 0.08 | 0.30 | 0.07 |
| Control Delay | 33.0 | 57.4 | 36.3 | 37.6 | 8.8 | 12.5 | 6.3 | 9.8 | 0.3 |
| Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6 | 0.0 |
| Total Delay | 33.0 | 57.4 | 36.3 | 37.6 | 8.8 | 12.5 | 6.3 | 10.5 | 0.3 |
| Queue Length 50th (ft) | 28 | 122 | 53 | 67 | 19 | 62 | 9 | 72 | 0 |
| Queue Length 95th (ft) | 54 | 189 | 91 | 119 | 44 | 106 | 25 | 128 | 0 |
| Internal Link Dist (ft) |  | 500 |  | 294 |  | 318 |  | 200 |  |
| Turn Bay Length (ft) | 130 |  | 130 |  | 90 |  | 50 |  |  |
| Base Capacity (vph) | 285 | 464 | 260 | 524 | 681 | 2052 | 678 | 1093 | 967 |
| Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 450 | 0 |
| Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Reduced v/c Ratio | 0.16 | 0.40 | 0.34 | 0.22 | 0.11 | 0.18 | 0.08 | 0.51 | 0.07 |

[^16]|  | 4 | $\rightarrow$ | 7 | 7 |  | 4 | 4 | $\dagger$ | 7 |  | $\downarrow$ | $\pm$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | ${ }^{7}$ | $\uparrow$ |  | ${ }^{1 /}$ | $\uparrow$ |  | ${ }^{7}$ | 中 $\%$ |  | ${ }^{7}$ | 4 | 「 |
| Traffic Volume (veh/h) | 45 | 112 | 63 | 84 | 77 | 32 | 71 | 293 | 49 | 52 | 309 | 62 |
| Future Volume (veh/h) | 45 | 112 | 63 | 84 | 77 | 32 | 71 | 293 | 49 | 52 | 309 | 62 |
| Initial $Q(Q b)$, veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Ped-Bike Adj(A_pbT) | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 |
| Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Work Zone On Approach |  | No |  |  | No |  |  | No |  |  | No |  |
| Adj Sat Flow, veh/h/ln | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 |
| Adj Flow Rate, veh/h | 47 | 118 | 66 | 88 | 81 | 34 | 75 | 308 | 52 | 55 | 325 | 65 |
| Peak Hour Factor | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 |
| Percent Heavy Veh, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Cap, veh/h | 235 | 143 | 80 | 190 | 188 | 79 | 676 | 1926 | 321 | 725 | 1176 | 997 |
| Arrive On Green | 0.03 | 0.13 | 0.13 | 0.06 | 0.15 | 0.15 | 0.04 | 0.63 | 0.63 | 0.04 | 0.63 | 0.63 |
| Sat Flow, veh/h | 1781 | 1127 | 630 | 1781 | 1251 | 525 | 1781 | 3047 | 509 | 1781 | 1870 | 1585 |
| Grp Volume(v), veh/h | 47 | 0 | 184 | 88 | 0 | 115 | 75 | 178 | 182 | 55 | 325 | 65 |
| Grp Sat Flow(s),veh/h/ln | 1781 | 0 | 1757 | 1781 | 0 | 1776 | 1781 | 1777 | 1779 | 1781 | 1870 | 1585 |
| Q Serve(g_s), s | 2.7 | 0.0 | 12.3 | 5.1 | 0.0 | 7.1 | 1.8 | 4.9 | 5.0 | 1.3 | 9.4 | 1.9 |
| Cycle Q Clear(g_c), s | 2.7 | 0.0 | 12.3 | 5.1 | 0.0 | 7.1 | 1.8 | 4.9 | 5.0 | 1.3 | 9.4 | 1.9 |
| Prop In Lane | 1.00 |  | 0.36 | 1.00 |  | 0.30 | 1.00 |  | 0.29 | 1.00 |  | 1.00 |
| Lane Grp Cap(c), veh/h | 235 | 0 | 222 | 190 | 0 | 266 | 676 | 1123 | 1124 | 725 | 1176 | 997 |
| V/C Ratio(X) | 0.20 | 0.00 | 0.83 | 0.46 | 0.00 | 0.43 | 0.11 | 0.16 | 0.16 | 0.08 | 0.28 | 0.07 |
| Avail Cap(c_a), veh/h | 288 | 0 | 447 | 260 | 0 | 511 | 748 | 1123 | 1124 | 774 | 1176 | 997 |
| HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Upstream Filter(l) | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.95 | 0.95 | 0.95 |
| Uniform Delay (d), s/veh | 43.6 | 0.0 | 51.1 | 42.6 | 0.0 | 46.4 | 7.3 | 9.0 | 9.0 | 7.1 | 10.0 | 8.6 |
| Incr Delay (d2), s/veh | 0.4 | 0.0 | 7.6 | 1.8 | 0.0 | 1.1 | 0.1 | 0.3 | 0.3 | 0.0 | 0.6 | 0.1 |
| Initial Q Delay(d3),s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| \%ile BackOfQ(50\%),veh/ln | 1.2 | 0.0 | 5.9 | 2.4 | 0.0 | 3.2 | 0.7 | 1.9 | 2.0 | 0.5 | 3.9 | 0.7 |
| Unsig. Movement Delay, s/veh |  |  |  |  |  |  |  |  |  |  |  |  |
| LnGrp Delay(d),s/veh | 44.0 | 0.0 | 58.8 | 44.3 | 0.0 | 47.5 | 7.4 | 9.3 | 9.4 | 7.1 | 10.6 | 8.7 |
| LnGrp LOS | D | A | E | D | A | D | A | A | A | A | B | A |
| Approach Vol, veh/h |  | 231 |  |  | 203 |  |  | 435 |  |  | 445 |  |
| Approach Delay, s/veh |  | 55.8 |  |  | 46.1 |  |  | 9.0 |  |  | 9.9 |  |
| Approach LOS |  | E |  |  | D |  |  | A |  |  | A |  |
| Timer - Assigned Phs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |  |  |  |
| Phs Duration (G+Y+Rc), s | 8.7 | 80.4 | 11.3 | 19.7 | 9.1 | 80.0 | 8.5 | 22.5 |  |  |  |  |
| Change Period ( $\mathrm{Y}+\mathrm{Rc}$ ), s | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 |  |  |  |  |
| Max Green Setting (Gmax), s | 7.5 | 52.5 | 11.5 | 30.5 | 9.5 | 50.5 | 7.5 | 34.5 |  |  |  |  |
| Max Q Clear Time (g_c+l1), s | 3.3 | 7.0 | 7.1 | 14.3 | 3.8 | 11.4 | 4.7 | 9.1 |  |  |  |  |
| Green Ext Time (p_c), s | 0.0 | 2.3 | 0.1 | 0.9 | 0.1 | 2.3 | 0.0 | 0.6 |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| HCM 6th Ctrl Delay |  |  | 23.3 |  |  |  |  |  |  |  |  |  |
| HCM 6th LOS |  |  | C |  |  |  |  |  |  |  |  |  |






5: Roeland Dr \& Martway St/Mission Gateway Dr

|  | 4 |  | $\checkmark$ |  | 4 | 4 |  | $\dagger$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Group | EBL | EBT | WBL | WBT | NBL | NBT | SBL | SBT |
| Lane Group Flow (vph) | 63 | 90 | 41 | 12 | 54 | 109 | 7 | 152 |
| v/c Ratio | 0.44 | 0.10 | 0.41 | 0.01 | 0.06 | 0.08 | 0.01 | 0.13 |
| Control Delay | 56.4 | 0.2 | 63.9 | 0.0 | 5.8 | 4.8 | 10.5 | 8.9 |
| Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Total Delay | 56.4 | 0.2 | 63.9 | 0.0 | 5.8 | 4.8 | 10.5 | 8.9 |
| Queue Length 50th (ft) | 49 | 0 | 31 | 0 | 10 | 17 | 2 | 39 |
| Queue Length 95th (ft) | 91 | 0 | 67 | 0 | 27 | 43 | 9 | 82 |
| Internal Link Dist (ft) |  | 534 |  | 206 |  | 320 |  | 274 |
| Turn Bay Length (ft) | 115 |  |  |  | 115 |  |  |  |
| Base Capacity (vph) | 390 | 980 | 276 | 990 | 932 | 1341 | 858 | 1207 |
| Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Reduced v/c Ratio | 0.16 | 0.09 | 0.15 | 0.01 | 0.06 | 0.08 | 0.01 | 0.13 |
| Intersection Summary |  |  |  |  |  |  |  |  |


|  | 4 | $\rightarrow$ |  | $\dagger$ |  |  | 4 | 4 | $p$ |  | $\downarrow$ | $\downarrow$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | ${ }^{7}$ | $\hat{*}$ |  | ${ }^{4}$ | $\hat{\beta}$ |  | ${ }^{4}$ | $\hat{F}$ |  | ${ }_{1}$ | $\hat{\beta}$ |  |
| Traffic Volume (veh/h) | 61 | 0 | 87 | 38 | 0 | 11 | 52 | 79 | 26 | 6 | 110 | 38 |
| Future Volume (veh/h) | 61 | 0 | 87 | 38 | 0 | 11 | 52 | 79 | 26 | 6 | 110 | 38 |
| Initial Q (Qb), veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Ped-Bike Adj(A_pbT) | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 |
| Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Work Zone On Approach |  | No |  |  | No |  |  | No |  |  | No |  |
| Adj Sat Flow, veh/h/ln | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 |
| Adj Flow Rate, veh/h | 63 | 0 | 90 | 41 | 0 | 12 | 54 | 81 | 28 | 7 | 113 | 39 |
| Peak Hour Factor | 0.97 | 0.92 | 0.97 | 0.92 | 0.92 | 0.92 | 0.97 | 0.97 | 0.92 | 0.92 | 0.97 | 0.97 |
| Percent Heavy Veh, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Cap, veh/h | 137 | 0 | 122 | 62 | 0 | 55 | 957 | 1031 | 356 | 964 | 935 | 323 |
| Arrive On Green | 0.08 | 0.00 | 0.08 | 0.03 | 0.00 | 0.03 | 0.03 | 0.78 | 0.78 | 0.70 | 0.70 | 0.70 |
| Sat Flow, veh/h | 1781 | 0 | 1585 | 1781 | 0 | 1585 | 1781 | 1328 | 459 | 1284 | 1329 | 459 |
| Grp Volume(v), veh/h | 63 | 0 | 90 | 41 | 0 | 12 | 54 | 0 | 109 | 7 | 0 | 152 |
| Grp Sat Flow(s),veh/h/ln | 1781 | 0 | 1585 | 1781 | 0 | 1585 | 1781 | 0 | 1788 | 1284 | 0 | 1788 |
| Q Serve(g_s), s | 4.1 | 0.0 | 6.7 | 2.7 | 0.0 | 0.9 | 0.9 | 0.0 | 1.7 | 0.2 | 0.0 | 3.3 |
| Cycle Q Clear(g_c), s | 4.1 | 0.0 | 6.7 | 2.7 | 0.0 | 0.9 | 0.9 | 0.0 | 1.7 | 0.2 | 0.0 | 3.3 |
| Prop In Lane | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 0.26 | 1.00 |  | 0.26 |
| Lane Grp Cap (c), veh/h | 137 | 0 | 122 | 62 | 0 | 55 | 957 | 0 | 1387 | 964 | 0 | 1258 |
| V/C Ratio(X) | 0.46 | 0.00 | 0.74 | 0.67 | 0.00 | 0.22 | 0.06 | 0.00 | 0.08 | 0.01 | 0.00 | 0.12 |
| Avail Cap(c_a), veh/h | 393 | 0 | 350 | 379 | 0 | 337 | 1081 | 0 | 1387 | 964 | 0 | 1258 |
| HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Upstream Filter(l) | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 |
| Uniform Delay (d), s/veh | 53.0 | 0.0 | 54.2 | 57.2 | 0.0 | 56.4 | 3.8 | 0.0 | 3.2 | 5.3 | 0.0 | 5.8 |
| Incr Delay (d2), s/veh | 2.4 | 0.0 | 8.4 | 11.7 | 0.0 | 2.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.2 |
| Initial Q Delay(d3),s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| \%ile BackOfQ(50\%),veh/In | 1.9 | 0.0 | 3.0 | 1.4 | 0.0 | 0.4 | 0.3 | 0.0 | 0.6 | 0.1 | 0.0 | 1.2 |
| Unsig. Movement Delay, s/veh |  |  |  |  |  |  |  |  |  |  |  |  |
| LnGrp Delay(d),s/veh | 55.4 | 0.0 | 62.6 | 68.9 | 0.0 | 58.3 | 3.9 | 0.0 | 3.3 | 5.3 | 0.0 | 5.9 |
| LnGrp LOS | E | A | E | E | A | E | A | A | A | A | A | A |
| Approach Vol, veh/h |  | 153 |  |  | 53 |  |  | 163 |  |  | 159 |  |
| Approach Delay, s/veh |  | 59.7 |  |  | 66.5 |  |  | 3.5 |  |  | 5.9 |  |
| Approach LOS |  | E |  |  | E |  |  | A |  |  | A |  |
| Timer - Assigned Phs |  | 2 |  | 4 | 5 | 6 |  | 8 |  |  |  |  |
| Phs Duration ( $\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$ ), s |  | 97.6 |  | 13.7 | 8.7 | 89.0 |  | 8.6 |  |  |  |  |
| Change Period ( $\mathrm{Y}+\mathrm{Rc}$ ), s |  | 4.5 |  | 4.5 | 4.5 | 4.5 |  | 4.5 |  |  |  |  |
| Max Green Setting (Gmax), s |  | 54.5 |  | 26.5 | 12.5 | 37.5 |  | 25.5 |  |  |  |  |
| Max Q Clear Time (g_c+1), s |  | 3.7 |  | 8.7 | 2.9 | 5.3 |  | 4.7 |  |  |  |  |
| Green Ext Time (p_c), s |  | 0.7 |  | 0.6 | 0.1 | 0.9 |  | 0.1 |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| HCM 6th Ctrl Delay |  |  | 26.8 |  |  |  |  |  |  |  |  |  |
| HCM 6th LOS |  |  | C |  |  |  |  |  |  |  |  |  |

## MEMORANDUM

To: Kaitlyn Service, Brian Scott, MPPA, CPM, City of Mission
From: Amy Dietz, P.E. - GBA
Date: 8/13/2020
Subject: Review \#2 of Stormwater Report: Sunflower Group Apartments
East of Martway Street and Nall Avenue, former Mission Bowl site

GBA performed a review of the Stormwater Report as prepared for the Sunflower Apartment Building. The property is situated on the former site of the Mission Bowl and Mini Golf, 5399 Martway Street. The following comments were noted during the review.

## BMP Comments

- The report proposed ADS's Barracuda S6 in-line treatment unit was selected, but no design information was given.
- Lee Ryherd clarified over the phone that a 0.5 inch rainfall produces a 1.76 cfs discharge from the parking lot. According to ADS's technical specifications, an S6 can treat up to approximately 2.5 cfs of peak flow. Therefore, per the manufacturer, the 'first flush' of stormwater can be treated for floatables, total suspended solids, and oil, using this size unit.


## Conclusions

If further clarification of these comments are needed, Amy Dietz can be contacted at (913)
577-8371.
cc: Dave Mennenga, GBA

# STORMWATER REPORT 

Site Improvements<br>Mission Bowl Apartments<br>5399 Martway Street<br>Mission, Johnson County, Kansas

## Prepared By:

Uhl Engineering, Inc.
4121 West $83{ }^{\text {rd }}$ Street, Suite 156
Prairie Village, Kansas 66208

Prepared For:

Mission Bowl Apartments, LLC.
1125 Grand Blvd \#202
Kansas City, Mo 64106
Attn: Jason Swords

July $9^{\text {th }}, 2020$


Revised August $7^{\text {th }}, 2020$


UHL ENEINEERNG, INC.


## UHL ENGINEERING, INL.

4121 West $83{ }^{\text {rd }}$ Street, Suite $156 \cdot$ Prairie Village, Kansas 66208

July, $9^{\text {th }} 2020$
Revised August $7^{\text {th }}, 2020$
Celia Duran
City Engineer
4775 Lamar Avenue
Mission KS 66202

## Stormwater Report - Site Improvements <br> Mission Bowl Apartments <br> Mission, Kansas

Dear Celia:
This report is a summary of existing and proposed stormwater conditions based on planned improvements at the Mission Bowl site located at 5399 Martway Street.

## A.SUMMARY

The proposed site is the former location of the Mission Bowl and Mini Golf. The existing building and site has been vacant since a fire in April of 2015 heavily damaged the structure.

Mission Bowl Apartments, LLC is proposing to demolish the existing building and construct a multi-story residential / apartment building with associated parking, utility service connections, landscaping and site recreational improvements.

The City of Mission has stipulated that stormwater detention for any added stormwater runoff and stormwater treatment is required.

## B. BACKGROUND

The site runoff currently flows away from the existing building - uncontrolled. The northern sub drainage basin flow to a stormwater system in the Martway Street right-of-way. Two catch basins along the north curb line of the private asphalt parking lot capture flow and route to the Martway stormwater. A small area of the site flows out of the driveway entrance to a curb inlet.

The western drainage basin flows to a grate inlet located on the west side of the existing asphalt parking lot, discharging directly to Rock Creek.

The eastern drainage sub basin flows uncontrolled to Rock Creek.

## C. IDENTIFICATION OF DOWNSTREAM DRAINAGE ISSUES

Downstream channel improvements are currently under construction (by others). These improvements will add a concrete block wall, reduce downstream erosion in Rock Creek, and improve the 100-year floodplain relative to the proposed channel (ATTACHMENT B). The Public Works Director has informed us neither Bid Alternative 1 nor Bid Alternative 2 were accepted by the City for the 2020 Rock Creek Channel Improvements.

## D. CORPS OF ENGINEERS REQUIREMENTS

No permitting through the Army Corps of Engineers is required for this project.

## E. FEMA/DWR REQUIREMENTS

The current FEMA Flood Insurance Map (FIRM) is based on a Letter of Map Revision (LOMR) done in 2008 in connection with the Martway Street stormwater improvements. This map shows that a northern portion of the property is protected from the 100 -year floodplain by a wall in the Rock Creek Channel (ATTACHMENTS C \& D). The height of the wall is such that the water surface associated with the 100-year storm event will not reach the site.

The proposed improvements to the Rock Creek Channel indicated that the 100-year flood plain will be altered and contained in the proposed channel (ATTACHMENT B). This would limit the floodplain and floodway to the existing drainage easement along the exterior of the site.

## F. STREAM CORRIDORS

No City ordinances for natural streams and preservation of stream corridors were indicated for this project.

## G.PROPOSED ON-SITE DRAINAGE SYSTEM

## Existing:

The existing site currently flows uncontrolled to the North, East and West away from the existing building. The north half of the site flow to a public system located in the Martway Street right-ofway.

The western part of the site sheet flows to an existing catch basin located behind a channel wall along Rock Creek. The Eastern part of the site sheet flows uncontrolled directly to Rock Creek. This sub drainage basin includes a $16,600 \mathrm{SF}$ mini golf course with surfaces of compacted rock and artificial turf (ATTACHMENT A, existing drainage conditions exhibit).
The site contains Sharpsburg-Urban soil, in the hydraulic C soil group (USDA soil report, ATTACHMENT E).

Rock Creek channel upgrades and improvements are currently under construction and are scheduled to be finished during the summer of 2020 (ATTACHMENT B).

An existing 24 " corrugated metal pipe, located along the eastern property line, is due to be abandoned as part of the 2020 Rock Creek Channel Improvements.

Revised August $7^{\text {th }}, 2020$
July 9, 2020
Celia Duran
Page 3

## Proposed On-site:

The proposed site development will include a five-story residential building (40,000 SF per floor) with associated parking facilities. The proposed site improvements also include the addition of recreational features such as a dog / pocket park along the Martway Street. The existing and proposed surface areas are shown in Table 1:

Table 1: Summary of Surface Area Types ${ }^{1}$

|  | Impervious Surface | Building | Open Space | Total |
| :---: | :---: | :---: | :---: | :---: |
| Existing | 2.99 | 0.48 | 0.13 | 3.60 |
| Proposed | 2.08 | 0.92 | 0.60 | 3.60 |
| Change | -0.91 | +0.44 | +0.47 |  |

- All areas in acres

The proposed site improvements would decrease the amount of impervious area on the site. Landscaping and added recreational features are example of the types of improvements that would lower the site impervious area.

The two existing catch basins along the north curb line will be modified and utilized to capture flow from the northern portion of the property and maintain the flow to the Martway storm sewer.
A private stormwater system is part of the proposed site improvements. Downspouts from the proposed apartment building and inlets in the parking area will be routed to the private stormwater system, discharging to Rock Creek at the southeast part of the site.

## Off-site:

Site improvements will include the installation of a concrete big block wall along the southeast limits of the project site located in the stormwater drainage easement. These improvements were designed with the Rock Creek Channel Improvements (Alternative Bid \#2 Sheet 25
ATTACHMENT B). These improvements are contingent on final construction bid pricing for this (private) project.
No off-site storm drainage improvements are proposed in the Martway Street public right of way.

## H.PROPOSED STORMWATER TREATMENT

Stormwater Treatment was calculated by using Worksheet 1A (MARC BMP Manual 2012). The proposed site improvements would decrease the amount of impervious surface area on site (ATTACHMENT F). A level of service on 1.9 is proposed for the site. This would meet the required calculated level of service for this development.

Revised August $7^{\text {th }}, 2020$
July 9, 2020
Celia Duran
Page 4
The City of Mission has requested that an element of stormwater treatment be included with the site improvements. Stormwater treatment improvements will capture pollutants \& contaminates and improve stormwater quality.

An inline media filtration devise will be incorporated within the private stormwater drainage system. The system was sized to treat the parking area on the south of the property that will flow through a private storm system and discharge into Rock Creek.
An ADS Barracuda S6 has been selected to be used for stormwater treatment on this site. This devise was sized to treat the "first flush" treatment value. Additional runoff will bypass the treatment area and continue down the system (ATTACHMENT G). The system should be inspected for maintenance every 2-3 years, see ATTACHMENT G for details.

## I. FLOOD CONTROL DETENTION

- Under the existing conditions, the composite curve number (CN) value is $96.7^{*}$, and the entire site flows uncontrolled.
- The overall site impervious area will decrease. Proposed pervious surface areas include the addition of a dog park, pocket park and site landscaping.
- Under the proposed conditions, the composite curve number (CN) value decreases to $93.9^{*}$ due to the added recreational site improvements and decreased pavement on site.
* weighted 'CN' calculations found in ATTACHMENT H

By lowering the overall impervious area on site, and lowering the overall site peak runoff (Table 2 and ATTACHMENT H), the Developer requests that stormwater detention be waived. TR-55 (Hydraflow Hydrographs 2018) was used to determine the flow rates for the existing and proposed conditions.

Table 2: Summary of Flows from the Site

| Existing (Site) | Site "CN" Value | Peak Flow (cfs) | Runoff Volume (cuft) | Change |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Q}_{2}$ | 96.7 | 10.19 cfs | $22,485 \mathrm{cuft}$ | $\mathrm{n} / \mathrm{a}$ |
| $\mathrm{Q}_{10}$ | 96.7 | 20.50 cfs | $47,328 \mathrm{cuft}$ | $\mathrm{n} / \mathrm{a}$ |
| $\mathrm{Q}_{100}$ | 96.7 | 38.86 cfs | $92,509 \mathrm{cuft}$ | $\mathrm{n} / \mathrm{a}$ |
| Proposed (Site) | Site "CN" Value | Peak Flow (cfs) | Runoff Volume (cuft) | Change |
| $\mathrm{Q}_{2}$ | 93.9 | 9.13 cfs | $19,850 \mathrm{cuft}$ | $-11.72 \%$ |
| $\mathrm{Q}_{10}$ | 93.9 | 19.46 cfs | $43,874 \mathrm{cuft}$ | $-7.29 \%$ |
| $\mathrm{Q}_{100}$ | 93.9 | 38.02 cfs | $88,478 \mathrm{cuft}$ | $-4.36 \%$ |

Revised August $7^{\text {th }}, 2020$
July 9, 2020
Celia Duran
Page 5

## J. Conclusions

- The proposed improvements will reduce the impervious area on site, and consequently the peak runoff from the site will be reduced.
- Stormwater BMP/treatment will be incorporated into the proposed site improvements. A level of service of 1.88 is proposed for the site, this is higher than the calculated required level of service of 0 .
- No additional stormwater improvements are necessary as a result of the development.


## K. Recommendations

- Installation of private storm systems to route stormwater thought site.
- Installation of stormwater treatment BMP devise to improve site stormwater quality.
- Stormwater detention be waived.

If you have any questions or comments regarding the contents of this report, please contact me directly at 913-385-2670.

Sincerely,


Lee J. Ryherd P.E.
UHL ENGINEERING, INC.

[^17]ATTACHMENT A
Existing and Proposed Site Plan



## ATTACHMENT B

2020 Rock Creek Channel Improvements Plans Retaining Wall Plan and Profile Storm Sewer Plan and Profile
Roeland Court Site Plan Modular Wall Sections Hardscape Restoration Plan Civil Notes and Details Turf Restoration Plan Bid Alternates Plan and Profile Access Ramp Details

## GENERAL NOTES












Austing sholl not be ollowed to comperete onvy of the work obecilied in those crowimese

PERMITS





 eenstit os oceermineo by Astu 06




City of Mission, Kansas

## Rock Creek

 Channel Improvementswith Roeland Court Townhomes Site Improvements



PREPARED \& SUBMITTED BY:
GEORGE BUTLER ASTOCIATES, INC.
9801 RENNER BOULEVARD
LENEXA, KANSAS $66219-9745$
ramendeda
PROJECT ENGINEER: PauI D. Miller, P.E., C.F.M.
APPROVED BY:
CITY OF MISSION

DIRECTOR OF PUBLIC WORKS: Celia Duran, P.E.

FLOODPLAIN INFORMATION LEGEND
TEMPORARY EROSION CONTROL LEGEND

---- Existing fooyr Floodolon



EROSION CONTROL NOTES





$\qquad$


 Ahy sediment trocked out onto the public roodway sholl be cleened up at the


SEQUENCE OF CONSTRUCTION ACTIVITIES

b) As Firid Conditions chanonge, the controctio is responsibile for adiusting ond relococting Emp's to

e) Complete groding ond instoll permonent seeding in isturred creas.
7) Remove occumulated sediment trom temporara siltation collection areas and straw wottles.
9) After compiefioio of oll constrection octititise ond sites is stabilized, remove straw wottes and




$\frac{\text { PROFILE OF TEMPORARY SEDIMENT TRAP / ROCK DITCH CHECK }}{\text { Not to Scole }}$

GBA
architects engineers

www.gbateam.con

Rock Creek Channel Improvements

## o oublisily <br>  <br> Conceptuol - $9 / 23 / 2019$ Prefiminory $50 \%$ - 10/10/2019 $\underbrace{\text { Preiminior } 90 \%-12 / 17 / 2013}_{\text {Finol }-2 / 6 / 2020}$

## 

2/17/2020

##  <br> $\underbrace{\text { PDM }}_{\text {SHEET TTLE }}$

Erosion Control Plan



## GRADING NOTES

## EGEND











,
$10=2=2$



GBA
architects engineers

980 Rener Boulevard
Leneexa, Kansas 6621
913.492 .040













GBA
architects engineers

v.gbateam.co

## 





GBA
architects engineers

| 9801 Renner Boulevard |
| :--- |
| Lenexa, Kansas 62621 |
| 913 |



Fs.





native setong ano















sol preparaton





















 $\frac{\text { NATVE SEEDNG AND PLANTNGS }}{A 1 \text { Work Sholl }}$








All native seeding ond
folloung time periods


















Zone 2 - Native Seed Mxx or RRparaian /Woodanand Restoration

| Scientific Name | Common Name |  |
| :---: | :---: | :---: |
| Eypus canadensis | Canada Wid.r.je | 20 |
| Eymus inginius | Virgnina Madraye | 4 |
| Panicum vigatum | Swichengass | 2 |
| Bromus pubescens | Hair Woocland fome | 4 |
| (Rudeackia | Sweet Conefower | 0.2 |
| Pensemon digitals | Foxlove Eearatognue | 0.2 |
| Solidgas speciosa | Showy Godeenod | 0.2 |
| Avena saliva | (Temporary Cover - Normal | 30 |
| TTfitum astium | Regreen Sterile Wheat (Temporary Cover - Fall and | ${ }^{20}$ |
| The Contractor shall provide and install native seed per the technical project specifications and at the specified locations on <br> No species substitutions or altering PLS seeding rates without Engineer and/or Owner approval. |  |  |

GBA
architects
engineers

.gbateam.co



ZONE 2 TYP. PLANT SPACING DETAIL

Pefilininory $50 \%$ - 10/10/2019 Preliminory $00 \%-12 / 17 / 2019$

## 

$\underbrace{\text { An }}_{\substack{\text { ReVEVEVED } \\ \text { Reow }}}$
$\underset{\substack{\text { Revent } \\ \text { SHEOT TTLE }}}{\text { Rent }}$
Restoration Details

22



GBA
architects engineers

9800 Renner Boulevard
Leneexa, Kansas 6621
913.492 .0400

## 



Conceptuol - $9 / 23 / 2019$ Preilininoy $50 \%$ - 10/10/2019 Prefininory $90 \%-12 / 17 / 2019$

ATTACHMENT C
FEMA FIRM Panel

NOTES TO USERS


























ATTACHMENT D
FEMA LOMR, February 2012

Federal Emergency Management Agency
Washington, D.C. 20472

## September 16, 2011

## CERTIFIED MAIL <br> RETURN RECEIPT REQUESTED

The Honorable Adrienne Foster
Mayor, City of Roeland Park
City Hall
4600 West $51^{\text {st }}$ Street
Roeland Park, KS 66205
Dear Mayor Foster:

The Flood Insurance Study Report and Flood Insurance Rate Map for your community have been revised by this floodplain management purposes and for all flood insurance policies and renewals issued in your community.

Additional documents are enclosed which provide information regarding this LOMR. Please see the List of Enclosures below to determine which documents are included. Other attachments specific to this request may be included as referenced in the Determination Document. If you have any questions regarding floodplain management regulations for your community or the National Flood Insurance Program (NFIP) in general, please contact the Consultation Coordination Officer for your community. If you have any technical questions regarding this LOMR, please contact the Director, Mitigation Division of the Department of Homeland Security's Federal Emergency free at 1-877-336-2627 (1-877-FEMA MAP). Additional infor 283-7002, or the FEMA Map Assistance Center toll http://www.fema.gov/nfip.

Sincerely,


Siamak Esfandiary, Ph.D., P.E., CFM
Program Specialist
Engineering Management Branch
Federal Insurance and Mitigation Administration

For: Luis Rodriguez, P.E., Chief
Engineering Management Branch
Federal Insurance and Mitigation Administration

List of Enclosures:
Letter of Map Revision Determination Document
Annotated Flood Insurance Rate Map
Annotated Flood Insurance Study Report
cc: Mr. Charles E. Sievert, P.E.
Black \& Veatch
8400 Ward Parkway
Kansas City, MO 64114

Mr. Mike Flickinger
Planning and Zoning Administrator
City of Roeland Park
4600 West $51^{\text {st }}$ Street
Roeland Park, KS 66205

The Honorable Jerry Wiley
Mayor, City of Fairway
4210 Shawnee Mission Parkway
Suite 100
Fairway, KS 66205

Mr. Mike Scanlon
Mission City Administrator
City Hall
6090 Woodson Road
Mission, KS 66202

Mr. Tom Morey, CFM
Kansas Dept. of Agriculture
109 SW $9^{\text {th }}$ Street, $2^{\text {nd }}$ Floor
Topeka, KS 66612-1283

The Honorable Laura McConwell
Mayor, City of Mission
City Hall
6090 Woodson Road
Mission, KS 66202


| Federal Emergency Management Agency <br> Washington, D.C. 20472 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
| LETTER OF MAP REVISION DETERMINATION DOCUMENT (CONTINUED) |  |  |  |  |  |  |
| OTHER FLOODING SOURCES AFFECTED BY THIS REVISION |  |  |  |  |  |  |
| Rock Creek - from approximately 350 feet downstream of Shawnee Mission Pa(S) \& REVISED REACH(ES) |  |  |  |  |  |  |
| Tributary F <br> from approximately 350 feet downstream of Shawnee Mission Parkway / U.S. 56 / U.S. 169 to approximately 340 feet upstream of Rock Creek <br> Rock Creek Tributary E-from the confluence with Rock Creek to approximately 250 feet downstream of West 57 th Street <br> Rock Creek Tributary F - from the confluence with Rock Creek to approximately 95 feet upstream of the confluence with Rock Creek |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| Flooding Source |  | SUMMARY OF REVISIONS |  |  |  |  |
| Rock Creek <br> Rock Creek Tributary E |  | Effective Flooding | Revised Flooding | Increases | Decreases |  |
|  |  | Zone AO <br> Zone AE <br> Floodway | Zone AE <br> Zone AE <br> Floodway | NONE <br> NONE <br> YES | YES <br> YES |  |
| Rock Creek Tributary F |  | BFEs | BFEs |  | YES YES |  |
| * BFEs - Base Flood Elevations |  | Zone X (unshaded) | Zone $X$ (unshaded) | YES NONE |  |  |

[^18] dation information about the NFIP is available on our website at http://www.fema.gov/nfip.


Siamak Esfandiary, Ph.D., P.E., CFM, Program Specialist Engineering Management Branch
Federal Insurance and Mitigation Administration

| Page 3 of 6 | Issue Date: Septe | ber 16, 2011 | Effective Date: February 8, 2012 |  |  | Case No.: 11-07-1190P | LOMR-APP |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Federal Emergency Management Agen Washington, D.C. 20472 |  |  |  |  |  |  |  |
| LETTER OF MAP REVISION DETERMINATION DOCUMENT (CONTINUED) |  |  |  |  |  |  |  |
| OTHER COMMUNITIES AFFECTED BY THIS REVISION |  |  |  |  |  |  |  |
| CID Number: 200170 Name: City of Mission, Kansas |  |  |  |  |  |  |  |
| TYPE. FTRM** ${ }^{\text {a }}$ AFFETED MAP PANELS |  |  |  | AFFECTED PORTIONS OF THE FLOOD INSURANCE STUDY REPORT |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  | DATE. Augu | 2009 | DATE OF EFFECTIVE FLOOD INSURANCE STUDY: August 3, 2009 <br> PROFILE(S): 344P, 345P, AND 349P <br> FLOODWAY DATA TABLE: TABLE 6 <br> SUMMARY OF DISCHARGES TABLE: TABLE 3 |  |  |  |
| CID Number: 205185 Name: City of Fairway, Kansas |  |  |  |  |  |  |  |
| AFFECTED MAP PANELS |  |  |  | AFFECTED PORTIONS OF THE FLOOD INSURANCE STUDY REPORT |  |  |  |
| TYPE: FIRM* | NO.: 20091C0024G | DATE: Augu |  |  |  |  |  |
|  |  |  |  | DATE OF EFFECTIVE FLOOD INSURANCE STUDY: August 3, 2009 <br> PROFILE(S): 344P, 345P, AND 349P <br> FLOODWAY DATA TABLE: TABLE 3 <br> FLOODWAY DATA TABLE: TABLE 6 |  |  |  |

# LETTER OF MAP REVISION DETERMINATION DOCUMENT (CONTINUED) 

## COMMUNITY INFORMATION

## APPLICABLE NFIP REGULATIONS/COMMUNITY OBLIGATION

We have made this determination pursuant to Section 206 of the Flood Disaster Protection Act of 1973 (P.L. 93-234) and in accordance with the National Flood Insurance Act of 1968, as amended (Title XIII of the Housing and Urban Development Act of 1968, P.L. 90-448), 42 U.S.C. 4001-4128, and 44 CFR Part 65. Pursuant to Section 1361 of the National Flood Insurance Act of 1968, as amended, communities participating in the NFIP are required to adopt and enforce floodplain management regulations that meet or exceed NFIP criteria. These criteria, including adoption of the FIS report and FIRM, and the modifications made by this LOMR, are the minimum requirements for continued NFIP participation and do not supersede more stringent State/Commonwealth or local requirements to which the regulations apply.

We provide the floodway designation to your community as a tool to regulate floodplain development. Therefore, the floodway revision we have described in this letter, while acceptable to us, must also be acceptable to your community and adopted by appropriate community action, as specified in Paragraph 60.3(d) of the NF1P regulations.

NFIP regulations Subparagraph $60.3(\mathrm{~b})(7)$ requires communities to ensure that the flood-carrying capacity within the altered or relocated portion of any watercourse is maintained. This provision is incorporated into your community's existing floodplain management ordinances; therefore, responsibility for maintenance of the altered or relocated watercourse, including any related appurtenances such as bridges, culverts, and other drainage structures, rests with your community. We may request that your community submit a description and schedule of maintenance activities necessary to ensure this requirement.

## COMMUNITY REMINDERS

We based this determination on the 1-percent-annual-chance discharges computed in the submitted hydrologic model. Future development of projects upstream could cause increased discharges, which could cause increased flood hazards. A comprehensive restudy of your community's flood hazards would consider the cumulative effects of development on discharges and could, therefore, indicate that greater flood hazards exist in this area.

Your community must regulate all proposed floodplain development and ensure that permits required by Federal and/or State/Commonwealth law have been obtained. State/Commonwealth or community officials, based on knowledge of local conditions and in the interest of safety, may set higher standards for construction or may limit development in floodplain areas. If your State/Commonwealth or community has adopted more restrictive or comprehensive floodplain management criteria, those criteria take precedence over the minimum NFIP requirements.

We will not print and distribute this LOMR to primary users, such as local insurance agents or mortgage lenders; instead, the community will serve as a repository for the new data. We encourage you to disseminate the information in this LOMR by preparing a news release for publication in your community's newspaper that describes the revision and explains how your community will provide the data and help interpret the NFIP maps. In that way, interested persons, such as property owners, insurance agents, and mortgage lenders, can benefit from the information.

$$
8-8 x
$$

| Page 5 of 6 | Issue Date：September 16， 2011 | Effective Date | February 8， 2012 | Case No |
| :---: | :---: | :---: | :---: | :---: |
| Federal Emergency Management <br> Washington，D．C． 20472 |  |  |  |  |
| LETTER OF MAP REVISION DETERMINATION DOCUMENT（CONTINUED） |  |  |  |  |

We have designated a Consultation Coordination Officer（CCO）to assist your community．The CCO will be the primary liaison between your community and FEMA．For information regarding your CCO，please contact：

Mr．Robert G．Bissell<br>Director，Mitigation Division<br>Federal Emergency Management Agency，Region VII<br>9221 Ward Parkway，Suite 300<br>Kansas City，MO 64114－3372<br>（816）283－7002

## STATUS OF THE COMMUNITY NFIP MAPS

We will not physically revise and republish the FIRM and FIS report for your community to reflect the modifications made by this
LOMR at this time．When changes to the pis the future，we will incorporate the modifications mady cited FIRM panel（s）and FIS report warrant physical revision and republication in the future，we will incorporate the modifications made by this LOMR at that time．


## LETTER OF MAP REVISION DETERMINATION DOCUMENT (CONTINUED)

| PUBLIC NOTIFICATION OF REVISION |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| PUBLIC NOTIFICATION |  |  |  |  |
| FLOODING SOURCE | LOCATION OF REFERENCED ELEVATION | BFE (FEET NAVD 88) |  | MAP PANEL NUMBER(S) |
|  |  | Effective | REVISED |  |
| Rock Creek Tributary E | Approximately 570 feet downstream of West 57 th Street | 936 | 937 | 20091C0024G |
|  | Approximately 1,040 feet downstream of West 57th Street | 935 | 932 | 20091C0024G |

Within 90 days of the second publication in the local newspaper, a citizen may request that we reconsider this determination. Any request for reconsideration must be based on scientific or technical data. Therefore, this letter will be effective only after the 90 -day appeal period has elapsed and we have resolved any appeals that we receive during this appeal period. Until this LOMR is effective, the revised BFEs presented in this LOMR may be changed.

A notice of changes will be published in the Federal Register. A short notice also will be published in your local newspaper on or about the dates listed below. Please refer to FEMA's website at https://www. floodmaps. fema.gov/fhm/Scripts/bfe main. asp for a more detailed description of proposed BFE changes, which will be posted approximately within two weeks of the date of this letter

Name: The Legal Record
Dates: October 4, 2011 and October 11, 2011

Table 3 - Summary of Discharges (Continued)


| FLOODING SOURCE |  |  | FLOODWAY |  |  | 1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ROSS SECTION | DISTANCE | WIDTH <br> (FEET) | SECTION AREA (SQUARE FEET) | MEAN VELOCITY (FEET PER SECOND) | EXISTING CONDITIONS (FEET NAVD) | FUTURE CONDITIONS (FEET NAVD) | EXISTING CONDITIONS WITHOUT FLOODWAY (FEET NAVD) | EXISTING CONDITIONS WITH FLOODWAY (FEET NAVD) | INCREASE (FEET) |
|  | ROCK CREEK (CONTINUED) |  |  |  |  |  |  |  |  |  |
|  | H | 10,977 ${ }^{1}$ | 83 | 424 | 10.6 | 928.6 | * | 928.6 | 928.6 | 0.0 |
|  | I | 12,294 ${ }^{1}$ | 52 | 378 | 8.3 | 935.7 | * | 935.7 | 935.7 | 0.0 |
|  | J | 13,674 ${ }^{1}$ | 137 | 426 | 6.1 | 948.0 | * | 948.0 | 928.0 | 0.0 |
|  | K | 15,110 ${ }^{1}$ | 39 | 167 | 12.5 | 956.9 |  | 956.9 | 957.0 | 0.1 |
| ROCK CREEK TRIBUTARY A A |  |  | AREA | REVISED |  |  | AUG 4, 2009 |  |  |  |
|  |  | $605^{2}$ | 90 | 738 | 2.0 | 893.0 |  | 893.0 | 893.4 | 0.4 |
|  | B | 1,672 ${ }^{2}$ | 54 | 102 | 7.7 | 902.4 | * | 902.4 | 902.5 | 0.1 |
|  | C | 2,716 ${ }^{2}$ | 83 | 138 | 3.6 | 924.5 | * | 924.5 | 924.7 | 0.2 |
| ROCK CREEK TRIBUTARY B |  |  |  |  |  |  |  |  |  |  |
|  | A | 1,008 ${ }^{2}$ | 25 | 30 | 5.6 | 913.9 | * | 913.9 | 914.0 | 0.1 |
|  | B | 1,667 ${ }^{2}$ | 17 | 25 | 6.7 | 932.2 | * | 932.2 | 932.6 | 0.4 |
| ROCK CREEK <br> TRIBUTARY D |  |  |  |  |  |  |  |  |  |  |
|  | A | $322{ }^{3}$ | 36 | 100 | 6.9 | 932.8 | * | 932.8 | 932.8 | 0.0 |
|  | B | $916^{3}$ | 60 | 212 | 3.3 | 944.5 | * | 944.5 | 945.1 | 0.6 |
|  | C | 2,208 ${ }^{3}$ | 98 | 312 | 2.2 | 961.1 | * | 961.1 | 961.5 | 0.4 |
| ${ }^{1}$ Feet above confluence with Brush Creek <br> ${ }^{2}$ Feet above confluence with Rock Creek <br> ${ }^{3}$ Feet above West $55^{\text {th }}$ Street <br> *Data not available |  |  |  |  |  |  |  |  | REVISED TO REFLECT LOMR EFFECTIVE FEB 8, 2012 |  |
| $\begin{aligned} & -1 \\ & \text { D } \\ & \text { m } \\ & \text { m } \\ & 0 \end{aligned}$ | FEDERAL EMERGENCY MANAGEMENT AGENCY <br> JOHNSON COUNTY, KS AND INCORPORATED AREAS |  |  |  | FLOODWAY DATA |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | ROCK CREEK - ROCK CREEK TRIBUTARY A - ROCK CREEK TRIBUTARY B - ROCK CREEK TRIBUTARY D |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |







## ATTACHMENT E

USDS Soil Map


United States Department of Agriculture


Natural
Resources
Conservation
Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Johnson County, Kansas


## Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.
Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/ portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).
Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.
Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require
alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

## Contents

Preface ..... 2
How Soil Surveys Are Made ..... 5
Soil Map ..... 8
Soil Map. ..... 9
Legend ..... 10
Map Unit Legend ..... 11
Map Unit Descriptions. ..... 11
Johnson County, Kansas ..... 13
7545-Sharpsburg-Urban land complex, 4 to 8 percent slopes ..... 13
References ..... 15

## How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil
scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.
Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.
Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.
After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

## Custom Soil Resource Report

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

## Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.


## MAP LEGEND

| Area of Interest (AOI) |  |
| :--- | :--- |
| $\square$ | Area of Interest (AOI) |
| Soils |  |
| $\square$ | Soil Map Unit Polygons |
| $\square$ | Soil Map Unit Lines |
| $\square$ | Soil Map Unit Points |

Special Point Features
(c) Blowout

B Borrow Pit
次 Clay Spot
$\diamond$ Closed Depression
Gravel Pit
$\therefore \quad$ Gravelly Spot
(4) Landfill
A. Lava Flow
A. Marsh or swamp
\& Mine or Quarry
(-) Miscellaneous Water

- Perennial Water
- Rock Outcrop
+ Saline Spot
$\because \quad$ Sandy Spot
을 Severely Eroded Spot
- Sinkhole

3) Slide or Slip
\& $\quad$ Sodic Spot

## MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.
Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:
Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Johnson County, Kansas
Survey Area Data: Version 18, Sep 16, 2019

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Jul 17, 2019—Sep 25, 2019

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background magery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

# Map Unit Legend 

| Map Unit Symbol |  |  | Map Unit Name Acres in AOI |
| :--- | :--- | :--- | ---: |
| 7545 | Sharpsburg-Urban land <br> complex, 4 to 8 percent <br> slopes | 3.3 | Percent of AOI |
| Totals for Area of Interest |  |  |  |

## Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.
A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.
Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.
The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however,
onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a soil series. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.
Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

## Johnson County, Kansas

## 7545-Sharpsburg-Urban land complex, 4 to 8 percent slopes

Map Unit Setting<br>National map unit symbol: tq4z<br>Elevation: 1,000 to 1,300 feet<br>Mean annual precipitation: 31 to 47 inches<br>Mean annual air temperature: 45 to 64 degrees F<br>Frost-free period: 185 to 255 days<br>Farmland classification: Farmland of statewide importance<br>\section*{Map Unit Composition}<br>Sharpsburg and similar soils: 55 percent<br>Urban land: 45 percent<br>Estimates are based on observations, descriptions, and transects of the mapunit.<br>\section*{Description of Sharpsburg}<br>\section*{Setting}<br>Landform: Hillslopes<br>Down-slope shape: Convex<br>Across-slope shape: Convex<br>Parent material: Silty and clayey loess<br>\section*{Typical profile}<br>A-0 to 9 inches: silt loam<br>$A B-9$ to 13 inches: silty clay loam<br>Bt - 13 to 35 inches: silty clay loam<br>BC - 35 to 60 inches: silty clay loam<br>\section*{Properties and qualities}<br>Slope: 3 to 8 percent<br>Depth to restrictive feature: More than 80 inches<br>Natural drainage class: Moderately well drained<br>Runoff class: Medium<br>Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20<br>to $0.60 \mathrm{in} / \mathrm{hr}$ )<br>Depth to water table: About 36 to 40 inches<br>Frequency of flooding: None<br>Frequency of ponding: None<br>Available water storage in profile: High (about 11.6 inches)<br>Interpretive groups<br>Land capability classification (irrigated): None specified<br>Land capability classification (nonirrigated): 3e<br>Hydrologic Soil Group: C<br>Ecological site: Loamy Upland (PE 30-37) (R106XY015KS)<br>Hydric soil rating: No<br>\section*{Description of Urban Land}<br>\section*{Setting}<br>Landform: Hillslopes<br>Down-slope shape: Convex<br>Across-slope shape: Convex

Custom Soil Resource Report

## References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.
Federal Register. September 18, 2002. Hydric soils of the United States.
Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.
Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262
Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http:// www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577
Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://
www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580
Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.
United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2_053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242
United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624
United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http:// www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

ATTACHMENT F
Level of Service Calculations

WORKSHEET 1A: REQUIRED LEVEL OF SERVICE - DEVELOPED SITE

Project: Mission Bowl
Location: Mission, Kansas

By: LJR
Checked:

1 Required Treatment Area

A Total Area Disturbed by Redevelopment Activity (Ac.)

| Disturbed Area Discription | Acres |
| :---: | ---: |
| Parking expansion | 3.6 |
|  |  |

B Existing Impervious Area Inside Disturbed Area (Ac.)

| Existing Impervious Area Descripiton |  |
| :---: | ---: |
| Existing Parking Lot | 2.74 |
| Existing Building | 0.48 |
| Existing Mini Golf | 0.38 |
|  | $1 B$ Totals: |

C Required Treatment Area (Ac.)
"1A" Totals Less "1B" Total "1C"

## 2 Percent Impervious in Postdevelopment Condition and Level of Service (LS)

A Total Postdevelopment Impervious Area Inside Disturbed Area

| Postdevelopment Impervious Area Description |  |
| :---: | ---: |
| Proposed Bulding | 0.92 |
| Parking | 1.49 |
|  | 2 Totals: |

B Existing Impervious Area Inside Disturbed Area (Ac.)
1B Totals: $\quad 3.6$

C Net Increse in Impervious Area (Ac.)
2A Total Less 1B Total
2C:
$-1.19$

D Percent Impervious
Net Increse in Impervious Area / Required Treatment Area

$$
2 \mathrm{C} / 1 \mathrm{C} * 100
$$



## E Level of Service

Use Percent Impervious to Enter Table 4.3
LS:
0

## 3 Minimum Required Total Value of BMP Package

Total Value Rating $=\mathrm{LS}$ * Required Teatment Area

## WORKSHEET 2: DEVELOPED MITIGATION PACKAGE(S) THAT MEET THE REQUIRED LS

Project: Mission Bowl
Location: Mission, Kansas

1 Required LS =

By: LJR
Checked:

Date: 8/7/2020
Date:

Note: Various BMP's may alter CN of proposed development, and LS; recalculate both if applicable.
2 Proposed BMP Option Package No.

| Cover/BMP Description | VR from |  |  |
| :---: | :---: | :---: | :---: |
|  | Treatment Area | Table 5 or $6{ }^{1}$ | Product of CN x Area |
| Proposed Southern Parking Lot | 1.35 | 5 | 6.75 |
| No Treatment | 2.25 | 0 | 0 |
|  |  |  |  |
|  |  |  |  |
|  |  | Total: |  |
|  | 3.6 |  | 6.75 |
|  |  |  |  |
|  | Wei | hted VR: | 1.88 |

= total production/total area

1 VR calculated for final BMP only in Treatment Train.
2 Total treatment area cannot exceed 100 percent of the actual site area.

Meets required LS (Yes/No)?


## TREATMENT VOLUME WORKSHEET

Project: Mission Bowl
Location: Mission KS
I. Water Quality Volume
WQv=P*Rv
WQv= Water Quality Volume (in.)
$P=$ Rainfall event in inches ( 1.37 in.)
$R v=$ Volumetric runoff coefficient
$R v=0.005+0.009$ ( \% Impervious)

Total Tributary Area
Impervious Area
\% Impervious

WQv=
Treatment Vol.

| 1.35 |
| ---: |
| 1.25 |
| 92.59259 |

1.148517 in
5628.31 cu ft

ATTACHMENT G
Stormwater Treatment Details


SECTION VIEW A-A


# Hydrodynamic Separator Performance According to the MARC Manual 

## Introduction:

In October 2012 the Kansas City Mid America Regional Council (MARC) released the Manual of Best Management Practices for Storm Water Quality. This manual goes on to describe a variety of construction BMP's Advantages, disadvantages, design considerations, and maintenance practices. One BMP discussed is a Hydrodynamic Separator (Section 8.12 Hydro Dynamic Separation).

As per the MARC Manual:

Hydrodynamic separators, also known as swirl concentrators or vortex separators, describe a wide variety of proprietary devices that have been developed in recent years. They are modifications of traditional oil/particle separators that typically target coarse solids and large oil droplets. While most of these systems utilize vortex enhanced sedimentation, others use circular screening systems or engineered cylindrical sedimentation. Vortex separation was originally developed for use in combined sewer overflows.

ADS promotes three hydrodynamic separators in the MARC manual regulated area. The selection of which hydrodynamic separator to use on a project varies based on the factors of treatment flow rate, maximum flow rate, configuration of the units (inline vs offline) and cost. The Baysaver Barracuda, Hydro International (HIL) Downstream Defender and HIL First Defense High Capacity would be included under the MARC manual's classification of a hydrodynamic separator.

## Value Rating system:

In order to assess the effectiveness of a particular BMP relative to another, the MARC manual outlines a 10 point value rating system. This 10 point rating system is based on 4 criteria: Water Quality Value, Volume Reduction, Temperature Reduction, Oils/Floatables Reduction. Water Quality Value is assessed on a scale of 1-5 by the expected median concentration ( $\mathrm{mg} / \mathrm{L}$ ) of Total Suspended Solids (TSS). Volume reduction is assessed on a scale of 0-2 with significant infiltration or evaporation scoring full marks. Temperature Reduction is assessed on a scale of -1 through 1. A device that increases runoff temperature scores a -1 , a device that does not change the runoff temp scores a 0 , and a device that reduces runoff temperature scores a 1 . Finally the device is awarded a score of 0-2 with respect to its ability to significantly reduce oils and floatable debris. Adding these scores up for the specific BMP will lead to a value between 0-10 points.

## ADS Hydrodynamic Separator Value Rating Calculation as determined by the MARC manual.

TABLE 4.5
Value Rating Calculations

| A | Water Quality Value Rating System | 0 | 1 | 2 | 3 | 4+ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Median Concentration of TSS in Effluent (milligrams per liter) | > $100 \mathrm{mg} / \mathrm{L}$ | $\begin{gathered} 50-100 \\ \mathrm{mg} / \mathrm{L} \end{gathered}$ | $20-50 \mathrm{mg} / \mathrm{L}$ | $\begin{gathered} 10-20 \\ \mathrm{mg} / \mathrm{L} \end{gathered}$ | <10 mg/L |
| B | Volume Reduction Rating System | 0 | 1 |  | 2 |  |
|  |  | Little or no volume reduction | Moderate infiltration or evaporation |  | Significant infiltration and evaporation |  |
| c | Temperature Reduction Rating System | -1 | 0 |  | 1 |  |
|  |  | Runoff temperature increases | Runoff temperature is unchanged |  | Runoff temperature decreases |  |
| D | Oils/Floatables Reduction Rating System | 0 | 1 |  | 2 |  |
|  |  | Little or no oils/floatables reduction | Moderate capture or reduction of oils/floatables |  | Significant capture or reduction of oils/floatables |  |
| Note: <br> Value Rating Calculation: $\mathrm{VR}=\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}$ |  |  |  |  |  |  |

Table 1: Value Rating Calculations as taken from the MARC Manual.

Water Quality Value: Water quality rating is assessed by analyzing the median concentration of TSS as sampled from the devices effluent discharge [Table 4.5. Manual of Best Management Practices for Storm Water Quality, 4-11_]. Each hydrodynamic separator has their own respective test reports for hydraulic loading and particle size iterations. A nationally recognized and accepted organization that has standardized the testing procedure, particle size and loading for hydrodynamic separators is New Jersey Department of Environmental Protection (NJDEP). NJDEP works in conjunction with New Jersey Corporation of Advanced Technology (NJCAT) to provide a listing of NJCAT Laboratory verified and NJDEP certified devices. When viewing NJCAT and NJDEP's respective website, the verified/certificate devices list could be observed as well as the specific test reports that are linked in the table. Please note that New Jersey utilizes a standardized particle size that is typically smaller (lower number of microns) particle size than what is shown on MARC Manual Reports. The Water Quality Value Rating will generally show a VR of 3 or 4 points for hydrodynamic separators from these test reports. The MARC Manual caps the hydrodynamic separator unit currently at 3 points of VR for Water Quality however, so these test results would correspond to a Water Quality Value Rating of 3 points.

Volume Reduction Rating: Not applicable for separators. Volume Reduction Rating of 0 point.

Temperature Reduction Rating: Not applicable for separators. Allow this BMP device is an underground unit, due to the short amount of time that the stormwater is in the separator unit, no temperature reduction is generally awarded to this device. Temperature Reduction Rating of 0 point.

Oils/Floatables Reduction Rating: The Oils/Floatables reduction is determined on a sliding scale of 0-2. Hydrodynamic separators are widely known to be one of the premier devices for the removal of oil and floatables. The separators were commonly referred to as oil / sand separators prior to the renaming of the device as a hydrodynamic separator. In the technical test reports, oil capacity (i.e. the storage potential for oils) could be determined. The storage potential for floatables could be determined as well. The basis for removing oils and floatables would be reliant on a practical maintenance interval and then the requirement for this category would be met for the service life of the device. Third party technical reports, such as NJCAT/NJDEP, could show these results based on which device is being specified. This corresponds to a Oils/Floatables Reduction Rating of $\mathbf{2}$ points.

MARC VALUE Rating: Per Table 1, MARC values are determined by the following formula

$$
V R=A+B+C+D
$$

Where
$A=$ Water quality value
$B=$ Volume reduction
C = Temperature reduction
D = Oil and floatables reduction

In the case of the ADS hydrodynamic separators:

$$
V R=3+0+0+2=5
$$

Per the MARC manual, the three stated ADS hydrodynamic separators should be assessed a 5 point value rating.


One of the advantages of the BaySaver Barracuda is the ease of maintenance. Like any system that collects pollutants, the BaySaver Barracuda must be maintained for continued effectiveness. Maintenance is a simple procedure performed using a vacuum truck or similar equipment. The systems were designed to minimize the volume of water removed during routine maintenance, reducing disposal costs.
Contractors can access the pollutants stored in the manhole through the manhole cover. This allows them to gain vacuum hose access to the bottom of the manhole to remove sediment and trash. There is no confined space entry necessary for inspection or maintenance.
The entire maintenance procedure typically takes from 2 to 4 hours, depending on the size of the system, the captured material, and the capacity of the vacuum truck.
Local regulations may apply to the maintenance procedure. Safe and legal disposal of pollutants is the responsibility of the maintenance contractor. Maintenance should be performed only by a qualified contractor.

## Inspection and Cleaning Cycle

Periodic inspection is needed to determine the need for and frequency of maintenance. You should begin inspecting as soon as construction is complete and thereafter on an annual basis. Typically, the system needs to be cleaned every $1-3$ years.
Excessive oils, fuels or sediments may reduce the maintenance cycle. Periodic inspection is important.

## Determining When to Clean

To determine the sediment depth, the maintenance contractor should lower a stadia rod into the manhole until it contacts the top of the captured sediment and mark that spot on the rod. Then push the probe through to the bottom of the sump and mark that spot to determine sediment depth.
Maintenance should occur when the sediment has reached the levels indicated in the Storage Capacity Chart.

## BaySaver Barracuda Storage Capacities

| Model | Manhole Diameter | Treatment Chamber <br> Capacity | Standard Sediment <br> Capacity (20" depth) | NJDEP Sediment Capacity <br> (50\% of standard depth) |
| :---: | :---: | :---: | :---: | :---: |
| S3 | $36 "$ | 212 gallons | 0.44 cubic yards | 0.22 cubic yards |
| S4 | $48^{\prime \prime}$ | 564 gallons | 0.78 cubic yards | 0.39 cubic yards |
| S5 | $60^{\prime \prime}$ | 881 gallons | 1.21 cubic yards | 0.61 cubic yards |
| S6 | $72^{\prime \prime}$ | 1269 gallons | 1.75 cubic yards | 0.88 cubic yards |
| S8 | $96 "$ | 3835 gallons | 3.10 cubic yards | 1.55 cubic yards |
| S10 | $120 "$ | 7496 gallons | 4.85 cubic yards | 2.43 cubic yards |

## Maintenance Instructions

1. Remove the manhole cover to provide access to the pollutant storage. Pollutants are stored in the sump, below the bowl assembly visible from the surface. You'll access this area through the 10" diameter access cylinder.
$\left.\begin{array}{|llll|c|}\hline & 4640 \text { TRUEMAN BLVD. } & \text { HILLIARD, OH 43026 } & (800) 821-6710 & \text { www.ads-pipe.com }\end{array}\right] 1$
2. Use a vacuum truck or other similar equipment to remove all water, debris, oils and sediment. See figure 1.
3. Use a high pressure hose to clean the manhole of all the remaining sediment and debris. Then, use the vacuum truck to remove the water.
4. Fill the cleaned manhole with water until the level reaches the invert of the outlet pipe.
5. Replace the manhole cover.
6. Dispose of the polluted water, oils, sediment and trash at an approved facility.

- Local regulations prohibit the discharge of solid material into the sanitary system. Check with the local sewer authority for authority to discharge the liquid.
- Some localities treat the pollutants as leachate. Check with local regulators about disposal requirements.
- Additional local regulations may apply to the maintenance procedure.


Figure 1

| 2 | 4640 TRUEMAN BLVD. HILLIARD, OH 43026 | (800) 821-6710 www.ads-pipe.com |
| :---: | :---: | :---: | :---: | :---: |

ATTACHMENT H
Site Hydrographs


Hydrograph Return Period Recap


Hydrograph Summary Report


## Hyd. No. 1

## E1

| Hydrograph type | $=$ SCS Runoff | Peak discharge | $=3.975 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=2 \mathrm{yrs}$ | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=8,836 \mathrm{cuft}$ |
| Drainage area | $=1.390 \mathrm{ac}$ | Curve number | $=97^{*}$ |
| Basin Slope | $=0.0 \%$ | Hydraulic length | $=0 \mathrm{ft}$ |
| Tc method | $=$ User | Time of conc. $(\mathrm{Tc})$ | $=5.00 \mathrm{~min}$ |
| Total precip. | $=2.20 \mathrm{in}$ | Distribution | $=\mathrm{Type} \mathrm{II}$ |
| Storm duration | $=24 \mathrm{hrs}$ | Shape factor | $=484$ |

[^19]

## Hyd. No. 2

## E2

| Hydrograph type | $=$ SCS Runoff | Peak discharge | $=0.454 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=2$ yrs | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=969 \mathrm{cuft}$ |
| Drainage area | $=0.170$ ac | Curve number | $=95^{*}$ |
| Basin Slope | $=0.0 \%$ | Hydraulic length | $=0 \mathrm{ft}$ |
| Tc method | $=$ User | Time of conc. (Tc) | $=5.00 \mathrm{~min}$ |
| Total precip. | $=2.20$ in | Distribution | $=$ Type II |
| Storm duration | $=24 \mathrm{hrs}$ | Shape factor | $=484$ |

[^20]

## Hyd. No. 3

## E3

| Hydrograph type | $=$ SCS Runoff | Peak discharge | $=1.001 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=2 \mathrm{yrs}$ | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=2,225 \mathrm{cuft}$ |
| Drainage area | $=0.350 \mathrm{ac}$ | Curve number | $=97^{*}$ |
| Basin Slope | $=0.0 \%$ | Hydraulic length | $=0 \mathrm{ft}$ |
| Tc method | $=$ User | Time of conc. $(\mathrm{Tc})$ | $=5.00 \mathrm{~min}$ |
| Total precip. | $=2.20 \mathrm{in}$ | Distribution | $=\mathrm{Type} \mathrm{II}$ |
| Storm duration | $=24 \mathrm{hrs}$ | Shape factor | $=484$ |

* Composite $($ Area/CN $)=[(0.340 \times 98)+(0.010 \times 74)] / 0.350$



## Hyd. No. 4

## E4

| Hydrograph type | $=$ SCS Runoff | Peak discharge | $=1.172 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=2 \mathrm{yrs}$ | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=2,606 \mathrm{cuft}$ |
| Drainage area | $=0.410$ ac | Curve number | $=97^{*}$ |
| Basin Slope | $=0.0 \%$ | Hydraulic length | $=0 \mathrm{ft}$ |
| Tc method | $=$ User | Time of conc. $(\mathrm{Tc})$ | $=5.00 \mathrm{~min}$ |
| Total precip. | $=2.20$ in | Distribution | $=$ Type II |
| Storm duration | $=24 \mathrm{hrs}$ | Shape factor | $=484$ |

[^21]

## Hyd. No. 5

## E5

| Hydrograph type | $=$ SCS Runoff | Peak discharge | $=1.230 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=2 \mathrm{yrs}$ | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=2,733 \mathrm{cuft}$ |
| Drainage area | $=0.430 \mathrm{ac}$ | Curve number | $=97^{*}$ |
| Basin Slope | $=0.0 \%$ | Hydraulic length | $=0 \mathrm{ft}$ |
| Tc method | $=$ User | Time of conc. $(\mathrm{Tc})$ | $=5.00 \mathrm{~min}$ |
| Total precip. | $=2.20$ in | Distribution | $=$ Type II |
| Storm duration | $=24 \mathrm{hrs}$ | Shape factor | $=484$ |

* Composite $($ Area/CN $)=[(0.420 \times 98)+(0.010 \times 74)] / 0.430$



## Hyd. No. 6

## E6

| Hydrograph type | $=$ SCS Runoff | Peak discharge | $=2.355 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=2 \mathrm{yrs}$ | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=5,116 \mathrm{cuft}$ |
| Drainage area | $=0.850$ ac | Curve number | $=96^{*}$ |
| Basin Slope | $=0.0 \%$ | Hydraulic length | $=0 \mathrm{ft}$ |
| Tc method | $=$ User | Time of conc. $(\mathrm{Tc})$ | $=5.00 \mathrm{~min}$ |
| Total precip. | $=2.20 \mathrm{in}$ | Distribution | $=\mathrm{Type} \mathrm{II}$ |
| Storm duration | $=24 \mathrm{hrs}$ | Shape factor | $=484$ |

[^22]

## Hyd. No. 7

Existing

| Hydrograph type | $=$ Combine | Peak discharge | $=10.19 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=2 \mathrm{yrs}$ | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=22,485 \mathrm{cuft}$ |
| Inflow hyds. | $=1,2,3,4,5,6$ | Contrib. drain. area | $=3.600 \mathrm{ac}$ |



## Hydrograph Report

## Hyd. No. 8

## P1

| Hydrograph type | $=$ SCS Runoff | Peak discharge | $=0.616 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=2 \mathrm{yrs}$ | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=1,410 \mathrm{cuft}$ |
| Drainage area | $=0.210 \mathrm{ac}$ | Curve number | $=98^{*}$ |
| Basin Slope | $=0.0 \%$ | Hydraulic length | $=0 \mathrm{ft}$ |
| Tc method | $=$ User | Time of conc. $(\mathrm{Tc})$ | $=5.00 \mathrm{~min}$ |
| Total precip. | $=2.20 \mathrm{in}$ | Distribution | $=\mathrm{Type} \mathrm{II}$ |
| Storm duration | $=24 \mathrm{hrs}$ | Shape factor | $=484$ |

[^23]

## Hydrograph Report

## Hyd. No. 9

## P2

| Hydrograph type | $=$ SCS Runoff | Peak discharge | $=0.733 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=2$ yrs | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=1,678 \mathrm{cuft}$ |
| Drainage area | $=0.250$ ac | Curve number | $=98$ |
| Basin Slope | $=0.0 \%$ | Hydraulic length | $=0 \mathrm{ft}$ |
| Tc method | $=0$ User | Time of conc. (Tc) | $=5.00 \mathrm{~min}$ |
| Total precip. | $=2.20$ in | Distribution | $=$ Type II |
| Storm duration | $=24 \mathrm{hrs}$ | Shape factor | $=484$ |



## Hydrograph Report

## Hyd. No. 10

## P3

| Hydrograph type | $=$ SCS Runoff | Peak discharge | $=0.197 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=2 \mathrm{yrs}$ | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=398 \mathrm{cuft}$ |
| Drainage area | $=0.110 \mathrm{ac}$ | Curve number | $=87^{*}$ |
| Basin Slope | $=0.0 \%$ | Hydraulic length | $=0 \mathrm{ft}$ |
| Tc method | $=$ User | Time of conc. (Tc) | $=5.00 \mathrm{~min}$ |
| Total precip. | $=2.20 \mathrm{in}$ | Distribution | $=$ Type II |
| Storm duration | $=24 \mathrm{hrs}$ | Shape factor | $=484$ |

[^24]

## Hydrograph Report

## Hyd. No. 11

P4

| Hydrograph type | $=$ SCS Runoff | Peak discharge | $=0.544 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=2 \mathrm{yrs}$ | Time to peak | $=11.97 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=1,089 \mathrm{cuft}$ |
| Drainage area | $=0.360 \mathrm{ac}$ | Curve number | $=84^{*}$ |
| Basin Slope | $=0.0 \%$ | Hydraulic length | $=0 \mathrm{ft}$ |
| Tc method | $=$ User | Time of conc. $(\mathrm{Tc})$ | $=5.00 \mathrm{~min}$ |
| Total precip. | $=2.20 \mathrm{in}$ | Distribution | $=\mathrm{Type} \mathrm{II}$ |
| Storm duration | $=24 \mathrm{hrs}$ | Shape factor | $=484$ |

* Composite (Area/CN) $=[(0.210 \times 74)+(0.150 \times 98)] / 0.360$



## Hydrograph Report

## Hyd. No. 12

## P5

| Hydrograph type | $=$ SCS Runoff | Peak discharge | $=0.513 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=2 \mathrm{yrs}$ | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=1,078 \mathrm{cuft}$ |
| Drainage area | $=0.200 \mathrm{ac}$ | Curve number | $=94^{*}$ |
| Basin Slope | $=0.0 \%$ | Hydraulic length | $=0 \mathrm{ft}$ |
| Tc method | $=$ User | Time of conc. $(\mathrm{Tc})$ | $=5.00 \mathrm{~min}$ |
| Total precip. | $=2.20$ in | Distribution | $=$ Type II |
| Storm duration | $=24 \mathrm{hrs}$ | Shape factor | $=484$ |

* Composite (Area/CN) $=[(0.030 \times 74)+(0.170 \times 98)] / 0.200$



## Hyd. No. 13

P6

| Hydrograph type | $=$ SCS Runoff | Peak discharge | $=1.462 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=2 \mathrm{yrs}$ | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=3,073 \mathrm{cuft}$ |
| Drainage area | $=0.570$ ac | Curve number | $=94^{*}$ |
| Basin Slope | $=0.0 \%$ | Hydraulic length | $=0 \mathrm{ft}$ |
| Tc method | $=$ User | Time of conc. $(\mathrm{Tc})$ | $=5.00 \mathrm{~min}$ |
| Total precip. | $=2.20$ in | Distribution | $=$ Type II |
| Storm duration | $=24 \mathrm{hrs}$ | Shape factor | $=484$ |

${ }^{*}$ Composite $($ Area $/ C N)=[(0.100 \times 75)+(0.470 \times 98)] / 0.570$

## Hydrograph Report

## Hyd. No. 14

P7

| Hydrograph type | $=$ SCS Runoff | Peak discharge | $=0.270 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=2 \mathrm{yrs}$ | Time to peak | $=11.97 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=540 \mathrm{cuft}$ |
| Drainage area | $=0.190$ ac | Curve number | $=83^{*}$ |
| Basin Slope | $=0.0 \%$ | Hydraulic length | $=0 \mathrm{ft}$ |
| Tc method | $=U s e r$ | Time of conc. (Tc) | $=5.00 \mathrm{~min}$ |
| Total precip. | $=2.20 \mathrm{in}$ | Distribution | $=$ Type II |
| Storm duration | $=24 \mathrm{hrs}$ | Shape factor | $=484$ |

[^25]

## Hydrograph Report

## Hyd. No. 15

## P8

| Hydrograph type | $=$ SCS Runoff | Peak discharge | $=0.616 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=2 \mathrm{yrs}$ | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=1,410 \mathrm{cuft}$ |
| Drainage area | $=0.210 \mathrm{ac}$ | Curve number | $=98^{*}$ |
| Basin Slope | $=0.0 \%$ | Hydraulic length | $=0 \mathrm{ft}$ |
| Tc method | $=$ User | Time of conc. (Tc) | $=5.00 \mathrm{~min}$ |
| Total precip. | $=2.20 \mathrm{in}$ | Distribution | $=\mathrm{Type} \mathrm{II}$ |
| Storm duration | $=24 \mathrm{hrs}$ | Shape factor | $=484$ |

[^26]

## Hydrograph Report

## Hyd. No. 16

## P9

| Hydrograph type | $=$ SCS Runoff | Peak discharge | $=0.616 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=2 \mathrm{yrs}$ | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=1,410 \mathrm{cuft}$ |
| Drainage area | $=0.210 \mathrm{ac}$ | Curve number | $=98^{*}$ |
| Basin Slope | $=0.0 \%$ | Hydraulic length | $=0 \mathrm{ft}$ |
| Tc method | $=$ User | Time of conc. $(\mathrm{Tc})$ | $=5.00 \mathrm{~min}$ |
| Total precip. | $=2.20 \mathrm{in}$ | Distribution | $=\mathrm{Type} \mathrm{II}$ |
| Storm duration | $=24 \mathrm{hrs}$ | Shape factor | $=484$ |

[^27]| Q (cfs) |
| :--- |

## Hyd. No. 17

## P10

| Hydrograph type | $=$ SCS Runoff | Peak discharge | $=3.574 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=2 \mathrm{yrs}$ | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=7,764 \mathrm{cuft}$ |
| Drainage area | $=1.290$ ac | Curve number | $=96^{*}$ |
| Basin Slope | $=0.0 \%$ | Hydraulic length | $=0 \mathrm{ft}$ |
| Tc method | $=$ User | Time of conc. $(\mathrm{Tc})$ | $=5.00 \mathrm{~min}$ |
| Total precip. | $=2.20$ in | Distribution | $=$ Type II |
| Storm duration | $=24 \mathrm{hrs}$ | Shape factor | $=484$ |

[^28]

## Hyd. No. 18

Proposed North

| Hydrograph type | $=$ Combine | Peak discharge | $=4.058 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=2 \mathrm{yrs}$ | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=8,727 \mathrm{cuft}$ |
| Inflow hyds. | $=8,9,10,11,12,13$ | Contrib. drain. area | $=1.700 \mathrm{ac}$ |



## Hyd. No. 19

Proposed South

| Hydrograph type | $=$ Combine | Peak discharge | $=5.071 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=2 \mathrm{yrs}$ | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=11,123 \mathrm{cuft}$ |
| Inflow hyds. | $=14,15,16,17$ | Contrib. drain. area | $=1.900 \mathrm{ac}$ |



## Hyd. No. 20

Proposed Site

| Hydrograph type | $=$ Combine | Peak discharge | $=9.129 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=2 \mathrm{yrs}$ | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=19,850 \mathrm{cuft}$ |
| Inflow hyds. | $=18,19$ | Contrib. drain. area | $=0.000 \mathrm{ac}$ |



Hydrograph Summary Report


## Hyd. No. 1

## E1

| Hydrograph type | $=$ SCS Runoff | Peak discharge | $=7.946 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=10 \mathrm{yrs}$ | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2$ min | Hyd. volume | $=18,449 \mathrm{cuft}$ |
| Drainage area | $=1.390$ ac | Curve number | $=97^{*}$ |
| Basin Slope | $=0.0 \%$ | Hydraulic length | $=0 \mathrm{ft}$ |
| Tc method | $=U s e r$ | Time of conc. $(\mathrm{Tc})$ | $=5.00 \mathrm{~min}$ |
| Total precip. | $=4.25 \mathrm{in}$ | Distribution | $=\mathrm{Type} \mathrm{II}$ |
| Storm duration | $=24 \mathrm{hrs}$ | Shape factor | $=484$ |

[^29]

## Hyd. No. 2

## E2

| Hydrograph type | $=$ SCS Runoff | Peak discharge | $=0.948 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=10$ yrs | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=2,128 \mathrm{cuft}$ |
| Drainage area | $=0.170$ ac | Curve number | $=95^{*}$ |
| Basin Slope | $=0.0 \%$ | Hydraulic length | $=0 \mathrm{ft}$ |
| Tc method | $==$ User | Time of conc. (Tc) | $=5.00 \mathrm{~min}$ |
| Total precip. | $=4.25$ in | Distribution | $=$ Type II |
| Storm duration | $=24 \mathrm{hrs}$ | Shape factor | $=484$ |

[^30]

## Hyd. No. 3

## E3

| Hydrograph type | $=$ SCS Runoff | Peak discharge | $=2.001 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=10 \mathrm{yrs}$ | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=4,645 \mathrm{cuft}$ |
| Drainage area | $=0.350 \mathrm{ac}$ | Curve number | $=97^{*}$ |
| Basin Slope | $=0.0 \%$ | Hydraulic length | $=0 \mathrm{ft}$ |
| Tc method | $=$ User | Time of conc. $(\mathrm{Tc})$ | $=5.00 \mathrm{~min}$ |
| Total precip. | $=4.25 \mathrm{in}$ | Distribution | $=\mathrm{Type} \mathrm{II}$ |
| Storm duration | $=24 \mathrm{hrs}$ | Shape factor | $=484$ |

* Composite $($ Area/CN $)=[(0.340 \times 98)+(0.010 \times 74)] / 0.350$



## Hyd. No. 4

## E4

| Hydrograph type | $=$ SCS Runoff | Peak discharge | $=2.344 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=10 \mathrm{yrs}$ | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=5,442 \mathrm{cuft}$ |
| Drainage area | $=0.410 \mathrm{ac}$ | Curve number | $=97^{*}$ |
| Basin Slope | $=0.0 \%$ | Hydraulic length | $=0 \mathrm{ft}$ |
| Tc method | $=$ User | Time of conc. $(\mathrm{Tc})$ | $=5.00 \mathrm{~min}$ |
| Total precip. | $=4.25 \mathrm{in}$ | Distribution | $=\mathrm{Type} \mathrm{II}$ |
| Storm duration | $=24 \mathrm{hrs}$ | Shape factor | $=484$ |

[^31]
## Hyd. No. 5

## E5

| Hydrograph type | $=$ SCS Runoff | Peak discharge | $=2.458 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=10 \mathrm{yrs}$ | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=5,707 \mathrm{cuft}$ |
| Drainage area | $=0.430$ ac | Curve number | $=97^{*}$ |
| Basin Slope | $=0.0 \%$ | Hydraulic length | $=0 \mathrm{ft}$ |
| Tc method | $=$ User | Time of conc. $(\mathrm{Tc})$ | $=5.00 \mathrm{~min}$ |
| Total precip. | $=4.25 \mathrm{in}$ | Distribution | $=$ Type II |
| Storm duration | $=24 \mathrm{hrs}$ | Shape factor | $=484$ |

* Composite $($ Area/CN $)=[(0.420 \times 98)+(0.010 \times 74)] / 0.430$



## Hyd. No. 6

## E6

| Hydrograph type | $=$ SCS Runoff | Peak discharge | $=4.805 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=10 \mathrm{yrs}$ | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=10,957 \mathrm{cuft}$ |
| Drainage area | $=0.850 \mathrm{ac}$ | Curve number | $=96^{*}$ |
| Basin Slope | $=0.0 \%$ | Hydraulic length | $=0 \mathrm{ft}$ |
| Tc method | $=\mathrm{User}$ | Time of conc. $(\mathrm{Tc})$ | $=5.00 \mathrm{~min}$ |
| Total precip. | $=4.25 \mathrm{in}$ | Distribution | $=\mathrm{Type} \mathrm{II}$ |
| Storm duration | $=24 \mathrm{hrs}$ | Shape factor | $=484$ |

[^32]

## Hyd. No. 7

Existing

| Hydrograph type | $=$ Combine | Peak discharge | $=20.50 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=10 \mathrm{yrs}$ | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=47,328 \mathrm{cuft}$ |
| Inflow hyds. | $=1,2,3,4,5,6$ | Contrib. drain. area | $=3.600 \mathrm{ac}$ |

Existing


## Hyd. No. 8

## P1

| Hydrograph type | $=$ SCS Runoff | Peak discharge | $=1.211 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=10 \mathrm{yrs}$ | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=2,869 \mathrm{cuft}$ |
| Drainage area | $=0.210 \mathrm{ac}$ | Curve number | $=98^{*}$ |
| Basin Slope | $=0.0 \%$ | Hydraulic length | $=0 \mathrm{ft}$ |
| Tc method | $=$ User | Time of conc. (Tc) | $=5.00 \mathrm{~min}$ |
| Total precip. | $=4.25 \mathrm{in}$ | Distribution | $=$ Type II |
| Storm duration | $=24 \mathrm{hrs}$ | Shape factor | $=484$ |

[^33]| Q (cfs) |
| :--- |
| 2.00 |

## Hyd. No. 9

P2

| Hydrograph type | $=$ SCS Runoff | Peak discharge | $=1.441 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=10 \mathrm{yrs}$ | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=3,415 \mathrm{cuft}$ |
| Drainage area | $=0.250 \mathrm{ac}$ | Curve number | $=98$ |
| Basin Slope | $=0.0 \%$ | Hydraulic length | $=0 \mathrm{ft}$ |
| Tc method | $=$ User | Time of conc. (Tc) | $=5.00 \mathrm{~min}$ |
| Total precip. | $=4.25 \mathrm{in}$ | Distribution | $=$ Type II |
| Storm duration | $=24 \mathrm{hrs}$ | Shape factor | $=484$ |

P2


## Hydrograph Report

## Hyd. No. 10

## P3

| Hydrograph type | $=$ SCS Runoff | Peak discharge | $=0.517 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=10$ yrs | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=1,073 \mathrm{cuft}$ |
| Drainage area | $=0.110$ ac | Curve number | $=87^{*}$ |
| Basin Slope | $=0.0 \%$ | Hydraulic length | $=0 \mathrm{ft}$ |
| Tc method | $=0$ User | Time of conc. (Tc) | $=5.00 \mathrm{~min}$ |
| Total precip. | $=4.25$ in | Distribution | $=$ Type II |
| Storm duration | $=24 \mathrm{hrs}$ | Shape factor | $=484$ |

[^34]

## Hyd. No. 11

## P4

| Hydrograph type | $=$ SCS Runoff | Peak discharge | $=1.554 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=10 \mathrm{yrs}$ | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=3,176 \mathrm{cuft}$ |
| Drainage area | $=0.360 \mathrm{ac}$ | Curve number | $=84^{*}$ |
| Basin Slope | $=0.0 \%$ | Hydraulic length | $=0 \mathrm{ft}$ |
| Tc method | $=$ User | Time of conc. $(\mathrm{Tc})$ | $=5.00 \mathrm{~min}$ |
| Total precip. | $=4.25 \mathrm{in}$ | Distribution | $=\mathrm{Type} \mathrm{II}$ |
| Storm duration | $=24 \mathrm{hrs}$ | Shape factor | $=484$ |

[^35]

Hyd No. 11

## Hyd. No. 12

P5

| Hydrograph type | $=$ SCS Runoff | Peak discharge | $=1.098 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=10 \mathrm{yrs}$ | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=2,430 \mathrm{cuft}$ |
| Drainage area | $=0.200 \mathrm{ac}$ | Curve number | $=94^{*}$ |
| Basin Slope | $=0.0 \%$ | Hydraulic length | $=0 \mathrm{ft}$ |
| Tc method | $=\mathrm{User}$ | Time of conc. $(\mathrm{Tc})$ | $=5.00 \mathrm{~min}$ |
| Total precip. | $=4.25 \mathrm{in}$ | Distribution | $=\mathrm{Type} \mathrm{II}$ |
| Storm duration | $=24 \mathrm{hrs}$ | Shape factor | $=484$ |

* Composite $($ Area/CN $)=[(0.030 \times 74)+(0.170 \times 98)] / 0.200$



## Hyd. No. 13

P6

| Hydrograph type | $=$ SCS Runoff | Peak discharge | $=3.130 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=10 \mathrm{yrs}$ | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=6,924 \mathrm{cuft}$ |
| Drainage area | $=0.570$ ac | Curve number | $=94^{*}$ |
| Basin Slope | $=0.0 \%$ | Hydraulic length | $=0 \mathrm{ft}$ |
| Tc method | $=$ User | Time of conc. $(\mathrm{Tc})$ | $=5.00 \mathrm{~min}$ |
| Total precip. | $=4.25 \mathrm{in}$ | Distribution | $=\mathrm{Type} \mathrm{II}$ |
| Storm duration | $=24 \mathrm{hrs}$ | Shape factor | $=484$ |

* Composite $($ Area/CN $)=[(0.100 \times 75)+(0.470 \times 98)] / 0.570$


## Hydrograph Report

## Hyd. No. 14

P7

| Hydrograph type | $=$ SCS Runoff | Peak discharge | $=0.795 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=10 \mathrm{yrs}$ | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=1,619 \mathrm{cuft}$ |
| Drainage area | $=0.190 \mathrm{ac}$ | Curve number | $=83^{*}$ |
| Basin Slope | $=0.0 \%$ | Hydraulic length | $=0 \mathrm{ft}$ |
| Tc method | $=$ User | Time of conc. $(\mathrm{Tc})$ | $=5.00 \mathrm{~min}$ |
| Total precip. | $=4.25 \mathrm{in}$ | Distribution | $=\mathrm{Type} \mathrm{II}$ |
| Storm duration | $=24 \mathrm{hrs}$ | Shape factor | $=484$ |

[^36]

## Hyd. No. 15

## P8

| Hydrograph type | $=$ SCS Runoff | Peak discharge | $=1.211 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=10 \mathrm{yrs}$ | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=2,869 \mathrm{cuft}$ |
| Drainage area | $=0.210 \mathrm{ac}$ | Curve number | $=98^{*}$ |
| Basin Slope | $=0.0 \%$ | Hydraulic length | $=0 \mathrm{ft}$ |
| Tc method | $=$ User | Time of conc. $(\mathrm{Tc})$ | $=5.00 \mathrm{~min}$ |
| Total precip. | $=4.25 \mathrm{in}$ | Distribution | $=$ Type II |
| Storm duration | $=24 \mathrm{hrs}$ | Shape factor | $=484$ |

[^37]| Q (cfs) |
| :--- |
| 2.00 P8 |

## Hyd. No. 16

## P9

| Hydrograph type | $=$ SCS Runoff | Peak discharge | $=1.211 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=10 \mathrm{yrs}$ | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=2,869 \mathrm{cuft}$ |
| Drainage area | $=0.210 \mathrm{ac}$ | Curve number | $=98^{*}$ |
| Basin Slope | $=0.0 \%$ | Hydraulic length | $=0 \mathrm{ft}$ |
| Tc method | $=$ User | Time of conc. (Tc) | $=5.00 \mathrm{~min}$ |
| Total precip. | $=4.25 \mathrm{in}$ | Distribution | $=$ Type II |
| Storm duration | $=24 \mathrm{hrs}$ | Shape factor | $=484$ |

[^38]

Hyd No. 16

## Hyd. No. 17

## P10

| Hydrograph type | $=$ SCS Runoff | Peak discharge | $=7.293 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=10 \mathrm{yrs}$ | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=16,629 \mathrm{cuft}$ |
| Drainage area | $=1.290 \mathrm{ac}$ | Curve number | $=96^{*}$ |
| Basin Slope | $=0.0 \%$ | Hydraulic length | $=0 \mathrm{ft}$ |
| Tc method | $=\mathrm{User}$ | Time of conc. $(\mathrm{Tc})$ | $=5.00 \mathrm{~min}$ |
| Total precip. | $=4.25 \mathrm{in}$ | Distribution | $=\mathrm{Type} \mathrm{II}$ |
| Storm duration | $=24 \mathrm{hrs}$ | Shape factor | $=484$ |

[^39]

Hyd No. 17

## Hyd. No. 18

Proposed North

| Hydrograph type | $=$ Combine | Peak discharge | $=8.952 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=10 \mathrm{yrs}$ | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=19,888 \mathrm{cuft}$ |
| Inflow hyds. | $=8,9,10,11,12,13$ | Contrib. drain. area | $=1.700 \mathrm{ac}$ |

## Hyd. No. 19

Proposed South

| Hydrograph type | $=$ Combine | Peak discharge | $=10.51 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=10 \mathrm{yrs}$ | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=23,986 \mathrm{cuft}$ |
| Inflow hyds. | $=14,15,16,17$ | Contrib. drain. area | $=1.900 \mathrm{ac}$ |



## Hyd. No. 20

Proposed Site

| Hydrograph type | $=$ Combine | Peak discharge | $=19.46 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=10 \mathrm{yrs}$ | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=43,874 \mathrm{cuft}$ |
| Inflow hyds. | $=18,19$ | Contrib. drain. area | $=0.000 \mathrm{ac}$ |


| Q (cfs)Proposed Site <br> Hyd. No. 20 -- 10 Year |
| :--- |
| 21.00 |



## Hyd. No. 1

## E1

| Hydrograph type | $=$ SCS Runoff | Peak discharge | $=15.03 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=100 \mathrm{yrs}$ | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=35,906 \mathrm{cuft}$ |
| Drainage area | $=1.390 \mathrm{ac}$ | Curve number | $=97^{*}$ |
| Basin Slope | $=0.0 \%$ | Hydraulic length | $=0 \mathrm{ft}$ |
| Tc method | $=U s e r$ | Time of conc. $(\mathrm{Tc})$ | $=5.00 \mathrm{~min}$ |
| Total precip. | $=7.95 \mathrm{in}$ | Distribution | $=\mathrm{Type} \mathrm{II}$ |
| Storm duration | $=24 \mathrm{hrs}$ | Shape factor | $=484$ |

[^40]

## Hyd. No. 2

## E2

| Hydrograph type | $=$ SCS Runoff | Peak discharge | $=1.822 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=100 \mathrm{yrs}$ | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=4,253 \mathrm{cuft}$ |
| Drainage area | $=0.170 \mathrm{ac}$ | Curve number | $=95^{*}$ |
| Basin Slope | $=0.0 \%$ | Hydraulic length | $=0 \mathrm{ft}$ |
| Tc method | $=\mathrm{User}$ | Time of conc. $(\mathrm{Tc})$ | $=5.00 \mathrm{~min}$ |
| Total precip. | $=7.95 \mathrm{in}$ | Distribution | $=$ Type II |
| Storm duration | $=24 \mathrm{hrs}$ | Shape factor | $=484$ |

[^41]

## Hyd. No. 3

## E3

| Hydrograph type | $=$ SCS Runoff | Peak discharge | $=3.783 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=100 \mathrm{yrs}$ | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=9,041 \mathrm{cuft}$ |
| Drainage area | $=0.350$ ac | Curve number | $=97^{*}$ |
| Basin Slope | $=0.0 \%$ | Hydraulic length | $=0 \mathrm{ft}$ |
| Tc method | $=$ User | Time of conc. $(\mathrm{Tc})$ | $=5.00 \mathrm{~min}$ |
| Total precip. | $=7.95 \mathrm{in}$ | Distribution | $=$ Type II |
| Storm duration | $=24 \mathrm{hrs}$ | Shape factor | $=484$ |

[^42]| Q (cfs) Hyd. No. 3-- 100 Year |
| :--- |

## Hyd. No. 4

## E4

| Hydrograph type | $=$ SCS Runoff | Peak discharge | $=4.432 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=100 \mathrm{yrs}$ | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=10,591 \mathrm{cuft}$ |
| Drainage area | $=0.410 \mathrm{ac}$ | Curve number | $=97^{*}$ |
| Basin Slope | $=0.0 \%$ | Hydraulic length | $=0 \mathrm{ft}$ |
| Tc method | $=\mathrm{User}$ | Time of conc. $(\mathrm{Tc})$ | $=5.00 \mathrm{~min}$ |
| Total precip. | $=7.95 \mathrm{in}$ | Distribution | $=\mathrm{Type} \mathrm{II}$ |
| Storm duration | $=24 \mathrm{hrs}$ | Shape factor | $=484$ |

* Composite (Area/CN) $=[(0.400 \times 98)+(0.010 \times 74)] / 0.410$


## Hyd. No. 5

## E5

| Hydrograph type | $=$ SCS Runoff | Peak discharge | $=4.648 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=100 \mathrm{yrs}$ | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=11,108 \mathrm{cuft}$ |
| Drainage area | $=0.430 \mathrm{ac}$ | Curve number | $=97^{*}$ |
| Basin Slope | $=0.0 \%$ | Hydraulic length | $=0 \mathrm{ft}$ |
| Tc method | $=\mathrm{User}$ | Time of conc. $(\mathrm{Tc})$ | $=5.00 \mathrm{~min}$ |
| Total precip. | $=7.95 \mathrm{in}$ | Distribution | $=\mathrm{Type} \mathrm{II}$ |
| Storm duration | $=24 \mathrm{hrs}$ | Shape factor | $=484$ |

* Composite $($ Area/CN $)=[(0.420 \times 98)+(0.010 \times 74)] / 0.430$



## Hyd. No. 6

## E6

| Hydrograph type | $=$ SCS Runoff | Peak discharge | $=9.154 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=100 \mathrm{yrs}$ | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=21,611 \mathrm{cuft}$ |
| Drainage area | $=0.850 \mathrm{ac}$ | Curve number | $=96^{*}$ |
| Basin Slope | $=0.0 \%$ | Hydraulic length | $=0 \mathrm{ft}$ |
| Tc method | $=\mathrm{User}$ | Time of conc. $(\mathrm{Tc})$ | $=5.00 \mathrm{~min}$ |
| Total precip. | $=7.95 \mathrm{in}$ | Distribution | $=\mathrm{Type} \mathrm{II}$ |
| Storm duration | $=24 \mathrm{hrs}$ | Shape factor | $=484$ |

[^43]
## Hyd. No. 7

Existing

| Hydrograph type | $=$ Combine | Peak discharge | $=38.86 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=100 \mathrm{yrs}$ | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=92,509 \mathrm{cuft}$ |
| Inflow hyds. | $=1,2,3,4,5,6$ | Contrib. drain. area | $=3.600 \mathrm{ac}$ |

Existing
Q (cfs)
Hyd. No. 7 -- 100 Year


## Hyd. No. 8

## P1

| Hydrograph type | $=$ SCS Runoff | Peak discharge | $=2.276 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=100 \mathrm{yrs}$ | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=5,510 \mathrm{cuft}$ |
| Drainage area | $=0.210 \mathrm{ac}$ | Curve number | $=98^{*}$ |
| Basin Slope | $=0.0 \%$ | Hydraulic length | $=0 \mathrm{ft}$ |
| Tc method | $=$ User | Time of conc. $(\mathrm{Tc})$ | $=5.00 \mathrm{~min}$ |
| Total precip. | $=7.95 \mathrm{in}$ | Distribution | $=\mathrm{Type} \mathrm{II}$ |
| Storm duration | $=24 \mathrm{hrs}$ | Shape factor | $=484$ |

[^44]

## Hyd. No. 9

## P2

| Hydrograph type | $=$ SCS Runoff | Peak discharge | $=2.710 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=100 \mathrm{yrs}$ | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=6,560 \mathrm{cuft}$ |
| Drainage area | $=0.250 \mathrm{ac}$ | Curve number | $=98$ |
| Basin Slope | $=0.0 \%$ | Hydraulic length | $=0 \mathrm{ft}$ |
| Tc method | $=\mathrm{User}$ | Time of conc. $(\mathrm{Tc})$ | $=5.00 \mathrm{~min}$ |
| Total precip. | $=7.95 \mathrm{in}$ | Distribution | $=\mathrm{Type} \mathrm{II}$ |
| Storm duration | $=24 \mathrm{hrs}$ | Shape factor | $=484$ |

P2


## Hyd. No. 10

## P3

| Hydrograph type | $=$ SCS Runoff | Peak discharge | $=1.102 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=100 \mathrm{yrs}$ | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=2,396 \mathrm{cuft}$ |
| Drainage area | $=0.110 \mathrm{ac}$ | Curve number | $=87^{*}$ |
| Basin Slope | $=0.0 \%$ | Hydraulic length | $=0 \mathrm{ft}$ |
| Tc method | $=$ User | Time of conc. $(\mathrm{Tc})$ | $=5.00 \mathrm{~min}$ |
| Total precip. | $=7.95 \mathrm{in}$ | Distribution | $=$ Type II |
| Storm duration | $=24 \mathrm{hrs}$ | Shape factor | $=484$ |

[^45]

## Hyd. No. 11

## P4

| Hydrograph type | $=$ SCS Runoff | Peak discharge | $=3.473 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=100 \mathrm{yrs}$ | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=7,409 \mathrm{cuft}$ |
| Drainage area | $=0.360 \mathrm{ac}$ | Curve number | $=84^{*}$ |
| Basin Slope | $=0.0 \%$ | Hydraulic length | $=0 \mathrm{ft}$ |
| Tc method | $=\mathrm{User}$ | Time of conc. $(\mathrm{Tc})$ | $=5.00 \mathrm{~min}$ |
| Total precip. | $=7.95 \mathrm{in}$ | Distribution | $=$ Type II |
| Storm duration | $=24 \mathrm{hrs}$ | Shape factor | $=484$ |

[^46]

## Hyd. No. 12

## P5

| Hydrograph type | $=$ SCS Runoff | Peak discharge | $=2.132 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=100 \mathrm{yrs}$ | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=4,922 \mathrm{cuft}$ |
| Drainage area | $=0.200 \mathrm{ac}$ | Curve number | $=94^{*}$ |
| Basin Slope | $=0.0 \%$ | Hydraulic length | $=0 \mathrm{ft}$ |
| Tc method | $=$ User | Time of conc. $(\mathrm{Tc})$ | $=5.00 \mathrm{~min}$ |
| Total precip. | $=7.95 \mathrm{in}$ | Distribution | $=$ Type II |
| Storm duration | $=24 \mathrm{hrs}$ | Shape factor | $=484$ |

[^47]

## Hyd. No. 13

P6

| Hydrograph type | $=$ SCS Runoff | Peak discharge | $=6.076 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=100 \mathrm{yrs}$ | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=14,029 \mathrm{cuft}$ |
| Drainage area | $=0.570 \mathrm{ac}$ | Curve number | $=94^{*}$ |
| Basin Slope | $=0.0 \%$ | Hydraulic length | $=0 \mathrm{ft}$ |
| Tc method | $=\mathrm{User}$ | Time of conc. $(\mathrm{Tc})$ | $=5.00 \mathrm{~min}$ |
| Total precip. | $=7.95 \mathrm{in}$ | Distribution | $=\mathrm{Type} \mathrm{II}$ |
| Storm duration | $=24 \mathrm{hrs}$ | Shape factor | $=484$ |

* Composite (Area/CN) $=[(0.100 \times 75)+(0.470 \times 98)] / 0.570$



## Hyd. No. 14

P7

| Hydrograph type | $=$ SCS Runoff | Peak discharge | $=1.808 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=100 \mathrm{yrs}$ | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=3,834 \mathrm{cuft}$ |
| Drainage area | $=0.190 \mathrm{ac}$ | Curve number | $=83^{*}$ |
| Basin Slope | $=0.0 \%$ | Hydraulic length | $=0 \mathrm{ft}$ |
| Tc method | $=$ User | Time of conc. $(\mathrm{Tc})$ | $=5.00 \mathrm{~min}$ |
| Total precip. | $=7.95 \mathrm{in}$ | Distribution | $=\mathrm{Type} \mathrm{II}$ |
| Storm duration | $=24 \mathrm{hrs}$ | Shape factor | $=484$ |

* Composite $($ Area/CN $)=[(0.120 \times 74)+(0.070 \times 98)] / 0.190$



## Hyd. No. 15

## P8

| Hydrograph type | $=$ SCS Runoff | Peak discharge | $=2.276 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=100 \mathrm{yrs}$ | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=5,510 \mathrm{cuft}$ |
| Drainage area | $=0.210 \mathrm{ac}$ | Curve number | $=98^{*}$ |
| Basin Slope | $=0.0 \%$ | Hydraulic length | $=0 \mathrm{ft}$ |
| Tc method | $=\mathrm{User}$ | Time of conc. $(\mathrm{Tc})$ | $=5.00 \mathrm{~min}$ |
| Total precip. | $=7.95 \mathrm{in}$ | Distribution | $=$ Type II |
| Storm duration | $=24 \mathrm{hrs}$ | Shape factor | $=484$ |

[^48]

## Hyd. No. 16

P9

| Hydrograph type | $=$ SCS Runoff | Peak discharge | $=2.276 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=100 \mathrm{yrs}$ | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=5,510 \mathrm{cuft}$ |
| Drainage area | $=0.210 \mathrm{ac}$ | Curve number | $=98^{*}$ |
| Basin Slope | $=0.0 \%$ | Hydraulic length | $=0 \mathrm{ft}$ |
| Tc method | $=$ User | Time of conc. $(\mathrm{Tc})$ | $=5.00 \mathrm{~min}$ |
| Total precip. | $=7.95 \mathrm{in}$ | Distribution | $=$ Type II |
| Storm duration | $=24 \mathrm{hrs}$ | Shape factor | $=484$ |

[^49]

## Hyd. No. 17

## P10

| Hydrograph type | $=$ SCS Runoff | Peak discharge | $=13.89 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=100 \mathrm{yrs}$ | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=32,798 \mathrm{cuft}$ |
| Drainage area | $=1.290$ ac | Curve number | $=96^{*}$ |
| Basin Slope | $=0.0 \%$ | Hydraulic length | $=0 \mathrm{ft}$ |
| Tc method | $=\mathrm{User}$ | Time of conc. $(\mathrm{Tc})$ | $=5.00 \mathrm{~min}$ |
| Total precip. | $=7.95 \mathrm{in}$ | Distribution | $=\mathrm{Type} \mathrm{II}$ |
| Storm duration | $=24 \mathrm{hrs}$ | Shape factor | $=484$ |

* Composite $($ Area/CN $)=[(0.090 \times 74)+(1.200 \times 98)] / 1.290$



## Hyd. No. 18

Proposed North

| Hydrograph type | $=$ Combine | Peak discharge | $=17.77 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=100$ yrs | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=40,826 \mathrm{cuft}$ |
| Inflow hyds. | $=8,9,10,11,12,13$ | Contrib. drain. area | $=1.700 \mathrm{ac}$ |

## Hyd. No. 19

Proposed South

| Hydrograph type | $=$ Combine | Peak discharge | $=20.25 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=100$ yrs | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=47,652 \mathrm{cuft}$ |
| Inflow hyds. | $=14,15,16,17$ | Contrib. drain. area | $=1.900 \mathrm{ac}$ |



Hyd. No. 20
Proposed Site

| Hydrograph type | $=$ Combine | Peak discharge | $=38.02 \mathrm{cfs}$ |
| :--- | :--- | :--- | :--- |
| Storm frequency | $=100$ yrs | Time to peak | $=11.93 \mathrm{hrs}$ |
| Time interval | $=2 \mathrm{~min}$ | Hyd. volume | $=88,478 \mathrm{cuft}$ |
| Inflow hyds. | $=18,19$ | Contrib. drain. area | $=0.000 \mathrm{ac}$ |



| Return Period (Yrs) | Intensity-Duration-Frequency Equation Coefficients (FHA) |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | B | D | E | (N/A) |
| 1 | 0.0000 | 0.0000 | 0.0000 | --- |
| 2 | 69.8703 | 13.1000 | 0.8658 | -------- |
| 3 | 0.0000 | 0.0000 | 0.0000 | -------- |
| 5 | 79.2597 | 14.6000 | 0.8369 | -------- |
| 10 | 88.2351 | 15.5000 | 0.8279 | --- |
| 25 | 102.6072 | 16.5000 | 0.8217 | -------- |
| 50 | 114.8193 | 17.2000 | 0.8199 | ---- |
| 100 | 127.1596 | 17.8000 | 0.8186 | -------- |

File name: SampleFHA.idf

## Intensity = B / (Tc + D)^E

| Return Period (Yrs) | Intensity Values (in/hr) |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 5 min | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 |
| 1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 2 | 5.69 | 4.61 | 3.89 | 3.38 | 2.99 | 2.69 | 2.44 | 2.24 | 2.07 | 1.93 | 1.81 | 1.70 |
| 3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 5 | 6.57 | 5.43 | 4.65 | 4.08 | 3.65 | 3.30 | 3.02 | 2.79 | 2.59 | 2.42 | 2.27 | 2.15 |
| 10 | 7.24 | 6.04 | 5.21 | 4.59 | 4.12 | 3.74 | 3.43 | 3.17 | 2.95 | 2.77 | 2.60 | 2.46 |
| 25 | 8.25 | 6.95 | 6.03 | 5.34 | 4.80 | 4.38 | 4.02 | 3.73 | 3.48 | 3.26 | 3.07 | 2.91 |
| 50 | 9.04 | 7.65 | 6.66 | 5.92 | 5.34 | 4.87 | 4.49 | 4.16 | 3.88 | 3.65 | 3.44 | 3.25 |
| 100 | 9.83 | 8.36 | 7.30 | 6.50 | 5.87 | 5.36 | 4.94 | 4.59 | 4.29 | 4.03 | 3.80 | 3.60 |

Tc $=$ time in minutes. Values may exceed 60.

Precip. file name: Sample.pcp

| Storm <br> Distribution | Rainfall Precipitation Table (in) |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 1-yr | 2-yr | 3-yr | 5-yr | 10-yr | 25-yr | 50-yr | 100-yr |
| SCS 24-hour | 0.00 | 2.20 | 0.00 | 3.30 | 4.25 | 5.77 | 6.80 | 7.95 |
| SCS 6-Hr | 0.00 | 1.80 | 0.00 | 0.00 | 2.60 | 0.00 | 0.00 | 4.00 |
| Huff-1st | 0.00 | 1.55 | 0.00 | 2.75 | 4.00 | 5.38 | 6.50 | 8.00 |
| Huff-2nd | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Huff-3rd | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Huff-4th | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Huff-Indy | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Custom | 0.00 | 1.75 | 0.00 | 2.80 | 3.90 | 5.25 | 6.00 | 7.10 |

Watershed Model Schematic. ..... 1
Hydrograph Return Period Recap ..... 2
2 - Year
Summary Report. ..... 3
Hydrograph Reports ..... 4
Hydrograph No. 1, SCS Runoff, E1 ..... 4
Hydrograph No. 2, SCS Runoff, E2 ..... 5
Hydrograph No. 3, SCS Runoff, E3 ..... 6
Hydrograph No. 4, SCS Runoff, E4 ..... 7
Hydrograph No. 5, SCS Runoff, E5 ..... 8
Hydrograph No. 6, SCS Runoff, E6 ..... 9
Hydrograph No. 7, Combine, Existing ..... 10
Hydrograph No. 8, SCS Runoff, P1 ..... 11
Hydrograph No. 9, SCS Runoff, P2. ..... 12
Hydrograph No. 10, SCS Runoff, P3 ..... 13
Hydrograph No. 11, SCS Runoff, P4. ..... 14
Hydrograph No. 12, SCS Runoff, P5 ..... 15
Hydrograph No. 13, SCS Runoff, P6 ..... 16
Hydrograph No. 14, SCS Runoff, P7 ..... 17
Hydrograph No. 15, SCS Runoff, P8 ..... 18
Hydrograph No. 16, SCS Runoff, P9. ..... 19
Hydrograph No. 17, SCS Runoff, P10 ..... 20
Hydrograph No. 18, Combine, Proposed North ..... 21
Hydrograph No. 19, Combine, Proposed South ..... 22
Hydrograph No. 20, Combine, Proposed Site. ..... 23
10 - Year
Summary Report. ..... 24
Hydrograph Reports ..... 25
Hydrograph No. 1, SCS Runoff, E1 ..... 25
Hydrograph No. 2, SCS Runoff, E2 ..... 26
Hydrograph No. 3, SCS Runoff, E3 ..... 27
Hydrograph No. 4, SCS Runoff, E4. ..... 28
Hydrograph No. 5, SCS Runoff, E5 ..... 29
Hydrograph No. 6, SCS Runoff, E6 ..... 30
Hydrograph No. 7, Combine, Existing ..... 31
Hydrograph No. 8, SCS Runoff, P1 ..... 32
Hydrograph No. 9, SCS Runoff, P2. ..... 33
Hydrograph No. 10, SCS Runoff, P3 ..... 34
Hydrograph No. 11, SCS Runoff, P4. ..... 35
Hydrograph No. 12, SCS Runoff, P5 ..... 36
Hydrograph No. 13, SCS Runoff, P6 ..... 37
Hydrograph No. 14, SCS Runoff, P7. ..... 38
Hydrograph No. 15, SCS Runoff, P8 ..... 39
Hydrograph No. 16, SCS Runoff, P9. ..... 40
Hydrograph No. 17, SCS Runoff, P10 ..... 41
Hydrograph No. 18, Combine, Proposed North ..... 42
Hydrograph No. 19, Combine, Proposed South ..... 43
Hydrograph No. 20, Combine, Proposed Site ..... 44
100 - Year
Summary Report ..... 45
Hydrograph Reports ..... 46
Hydrograph No. 1, SCS Runoff, E1 ..... 46
Hydrograph No. 2, SCS Runoff, E2 ..... 47
Hydrograph No. 3, SCS Runoff, E3 ..... 48
Hydrograph No. 4, SCS Runoff, E4 ..... 49
Hydrograph No. 5, SCS Runoff, E5 ..... 50
Hydrograph No. 6, SCS Runoff, E6 ..... 51
Hydrograph No. 7, Combine, Existing ..... 52
Hydrograph No. 8, SCS Runoff, P1 ..... 53
Hydrograph No. 9, SCS Runoff, P2 ..... 54
Hydrograph No. 10, SCS Runoff, P3 ..... 55
Hydrograph No. 11, SCS Runoff, P4 ..... 56
Hydrograph No. 12, SCS Runoff, P5 ..... 57
Hydrograph No. 13, SCS Runoff, P6 ..... 58
Hydrograph No. 14, SCS Runoff, P7 ..... 59
Hydrograph No. 15, SCS Runoff, P8 ..... 60
Hydrograph No. 16, SCS Runoff, P9 ..... 61
Hydrograph No. 17, SCS Runoff, P10 ..... 62
Hydrograph No. 18, Combine, Proposed North ..... 63
Hydrograph No. 19, Combine, Proposed South ..... 64
Hydrograph No. 20, Combine, Proposed Site ..... 65
IDF Report ..... 66


Wastewater

# Preliminary Comments.pdf Markup Summary 

JCW Comment (6)


Wastewater


Letters and Emails Received Regarding Proposed Mission Bowl Redevelopment Project


Real Estate investments - Brokerage - Leasing • Management

August 14, 2020
Planning Commission Members
City of Mission
6090 Woodson
Mission, KS 66202
Re: Redevelopment - Former Mission Bowl
Dear Planning Commission Members,
Please allow me this opportunity to introduce myself to you. My name is Steve Choikhit, and I own the Mission Mart Shopping Center located on the southeast corner of Johnson Drive and Nall. Our property includes the 128,500 square foot retail shopping center in addition to the land on which the former Mission Bowl is situated. As you know, Sunflower Development Group is proposing to build a new apartment development on this site, and they will be bringing their plans to you at the Planning Commission meeting on Monday, August 24. Although I would normally attend a meeting of this importance, I am scheduled to undergo open heart surgery on August 17 and will be unable to attend. It is my hope that this letter will give you some insight on my feelings regarding this proposed development.

Some of you may already know me or know of me as I have been involved in the ownership of Mission Mart Shopping Center for the past thirty five (35) years. Last December, my wife and I bought out our partners, and we plan to own the property for many more years to come. We have a very substantial investment of time and money in Mission Mart, and along those lines, we continue to be committed to the continued overall growth and well being of the City of Mission. As one of the biggest tax payers in the city over these years, we would like to think that our efforts in making our center continue to grow and thrive have made a very positive impact on the city.

We have seen many changes along Johnson Drive over the years. Mission Shopping Center, anchored by Macy's, was built in 1956 at the corner of Johnson Drive and Roe. In 1989, that center was demolished and rebuilt as the 350,000 square foot Mission Center Mall that was anchored on each end by Dillards. That mall was then demolished in 2006 in favor of another development that was slated to be Mission Gateway. Shortly thereafter, a study was done for the City of Mission that included traffic patterns along Johnson Drive. It was decided that our city needed to be more pedestrian friendly. This resulted in walking trails being built throughout various parts of the city for residents to enjoy. Johnson Drive was also redesigned from a four (4) lane major thoroughfare to a two lane street that would see traffic speeds reduced from thirty five (35) miles per hour to twenty five (25) miles per hour in order to enhance the pedestrian friendly part of the overall plan.


Real Estate Investments • Brokerage - Leasing * Management

Approximately one (1) year ago, I met with Mayor Ron Appletoft and Laura Smith to discuss our vision and future plans for the former Mission Bowl, which at that time, had been tied up in bankruptcy court and a lawsuit for over three (3) years by the owners of the bowling alley. I told them at our meeting that once we were able to get the property back under our control, I envisioned the highest and best use for this tract of land would be apartments rather than more retail. Their reaction to my suggestion was favorable. The reason for this vision was that apartments would act as a nice compliment to the existing retail base that we already have in place in the City of Mission, rather than adding more retail development that would compete with the ample retail space that is already in place. The new apartments would also help create a "lifestyle development" for the new residents as they would be able to live on one side of the street and meet their shopping and restaurant needs on the other side.

A few months ago, we entered into a contract with Sunflower Development Group to sell them approximately three (3) acres of land which includes the former Mission Bowl. Although we had several other apartment developers who were also interested in buying the property, we chose to go with Sunflower for a variety of reasons. First of all, they have a good track record as they have successfully developed, redeveloped or are in the construction process of over $\$ 180,000,000$ of apartments in the Kansas City area alone since 2015. Some of their properties are as follows:

The Grand - 1125 Grand - 202 units - $\$ 69,000,000$
Pershing Lofts - 215 Pershing Road - 55units - $\$ 20,000,000$
Uptown Lofts - Corner of Valentine Road \& Broadway - 213 units - $\$ 45,000,000$
Brookside Commons $-65^{\text {th }} \&$ Rockhill Road - 210 units $-\$ 40,000,000$
Another reason we liked Sunflower Development Group was the fact that they are local developers who have offices in downtown Kansas City, Missouri. Their partners on this project have offices in Lawrence, Kansas. They currently manage a couple of Sunflower's developments outlined above, and they will manage this property as well. Furthermore, Sunflower indicated that they would be willing to work with us, the City and the neighbors regarding their development plans so they could try to come up with a plan that would work well for all who would be affected by the development. As you may know, they already had a Zoom meeting with the neighborhood group directly south of the property, and that meeting seemed to go very well.

Their plans for approximately 166 units seem to be a good fit for the area. The project is not too large, yet it is large enough to make a positive impact on the City of Mission. Construction on The Locale was recently completed at the corner of Johnson Drive and Lamar, and it is my understanding that leasing on this 200 unit apartment complex is going very well for them as they are already fifty percent (50\%) leased. As you know,

the Mission Gateway project has stalled once again, so the apartments that were supposed to be built at that location will most likely not be coming on line any time soon, if at all. Along those lines, that project which is commonly referred to as the "gateway" to our city, will unfortunately and most likely be an eye sore for quite some time.

The proposed development by Sunflower Development Group will enable us to move our eyes off of that stalled project and onto one which will help all of us in a number of ways. The 166 units will most likely bring in at least 200 to 250 new residents into our city. These are people that we need in order to help our existing retail stores and restaurants grow and thrive over the years, which in turn, will increase our chances that they remain long-term tenants in our city. These additional people in our community will also make it more attractive for other retail and office users to locate their businesses in the City of Mission as they will have that many more people that will make up their built-in audience. These additional residents and businesses will translate into more money being spent in Mission, and that will result in more sales tax revenue for the city. The apartments at this development will help us create a "lifestyle environment" with the 128,500 square feet of shopping and dining establishments that are already conveniently located directly across the street for the new residents to enjoy. This fits in very nicely with the City's vision of pedestrian friendly streets and trails that are also already in place.

During the past ten (10) years, one of the biggest obstacles that I have had to overcome as I leased vacant spaces at our Mission Mart Shopping Center was the perception that the east side of Johnson Drive was not nearly as strong as the west side. That comment that I seemed to hear over and over again was the direct result of three (3) different projects, Mission Gateway, the former Wild Oats building located directly across the street and the Mission Bowl. Since the demolition of Mission Center Mall in 2006, the Mission Gateway project has been one disappointment after another. For years, it was nothing more than an unsightly tract of land that was filled with weeds and piles of dirt. After years of broken promises, the developer finally broke ground which got a lot of people in our city very excited, and I was one of those people. Unfortunately, construction on that project has stalled twice, and now we are left with a half-way completed, lien-riddled project without financing, with not much hope of if or when it will ever be completed. The result is an eyesore for the City of Mission and all of the neighboring tenants and property owners. The Wild Oats building directly across the street from Mission Gateway has been vacant for approximately thirteen (13) years. Although the out-oftown owner has had opportunities to sell the building to multiple buyers, he has instead chosen to leave it vacant, and in a less-than-desirable physical condition. Finally, after a fire in 2015 partially destroyed the Mission Bowl, it was tied up in bankruptcy court with a lien and a lawsuit against it, and that prevented our ownership entity from doing anything with the property during that period of time. It was not until December 2019 that we were finally able to re-gain control of the property. Taking all of the problems

associated with these three (3) properties into consideration, it is easy to see why the east side of Johnson Drive has had the perception of being the "weaker side" of this major thoroughfare.

Now we have an opportunity to change this negative connotation regarding the east end of Johnson Drive and the eye sore that we are left with at Mission Gateway and the former Wild Oats building. We have a local developer with a good track record who is willing to make an investment in excess of $\$ 28,000,000$ in our community. They will own and operate the new development with their successful team that is already in place and is a proven commodity. Their proposed development has good support from the residential neighbors to the south and the existing businesses in the immediate area. The City of Mission will not have the responsibility to sell any bonds to make this project happen, they will have no responsibility to make any improvements to the site or surrounding street, and they will have a lot of upside potential as it relates to increased sales tax revenue that they are sure to receive. Residents of this new apartment development could also turn out to be permanent residents in the City of Mission, either living in the apartments or buying a home in Mission at some time in the future.

We have an excellent opportunity to bring something good to the City of Mission, and we have a good, reputable and financially able local development group who has proven over and over again that they can and will finish what they start. I ask you to embrace this opportunity, work with Sunflower Development Group to approve their development plans and welcome what they have to offer to our city. You will not regret your decision as it will give all of us who have a commitment to the City of Mission, the boost that we all need right now as we face so much uncertainty in our lives. This is a win/win proposition for everyone, something that we do not see often enough, and I ask for your help and support so we can take advantage of this opportunity. Thank you for your time and consideration, and I look forward to working together to make this proposed development a reality.

Kindest Regards,
COMMERCIAL VENTURES, LLC


Steve Choikhit

# Mission Bowl Redevelopment - Letter in Support (For Planning Commission) <br> 1 message 

Ben Chociej [bchociej@gmail.com](mailto:bchociej@gmail.com)
To: Brian Scott [bscott@missionks.org](mailto:bscott@missionks.org)
Tue, Aug 18, 2020 at 7:03 PM
Cc: Kaitlyn Service [kservice@missionks.org](mailto:kservice@missionks.org), Banks Floodman [bfloodman@sunflowerkc.com](mailto:bfloodman@sunflowerkc.com), Sollie Flora
[sflora@missionks.org](mailto:sflora@missionks.org), Ken Davis [kdavis@missionks.org](mailto:kdavis@missionks.org)
The following message is addressed to the Planning Commission in support of the Mission Bowl redevelopment proposal Please forward/share as you see fit.

## --

Commissioners:
My name is Ben Chociej. My wife, Betsy, and I live at 5136 W 60th Terrace, directly behind the old Mission Bowl site. Our home overlooks the old bowling alley and wastewater facility very directly, just across the Rock Creek Channel from our backyard. Tonight I write to ask you to approve the proposed apartment development on this site presented by Mr. Floodman from Sunflower Development.

Like others who have written on behalf of previous similar projects, my wife and I moved to Mission three years ago, in large part because we were excited by its potential growth and development. Close-in suburbs like Mission are exciting because they can provide the best of both urban and suburban living, and that is precisely what attracted us to the area. Projects like the Locale, the Gateway, and the previously proposed Martway Mixed-Use project are projects we are or would have been thrilled to see in Mission and believe will bring great new life and energy to the community. We view the Mission Bowl apartment proposal in a similar way.

Density and walkability are obvious key factors to the success of our close-in community. Our main street fares better than many, but to continue thriving and acting as the hub of our community, we need residents dining, shopping, walking, and biking in the area. And there can be no doubt that the proposed development would help build a larger, more resilient tax base for our city. Multifamily residential developments such as this one are therefore vital to the success of our beloved Johnson Drive "main street" and our city as a whole.

I understand that this project, like its predecessors, will face an obstacle in the height restrictions related to its zoning. While I believe the continued struggle to meet this restriction in a fiscally feasible way is a strong suggestion that the council revisit this restriction altogether, I ask you to approve a deviation in this specific case, among my other reasons, because of the unique topography of the site.

Unlike the Martway Mixed-Use proposal, the site of this proposal sits at a much lower elevation compared to the surrounding single family homes. Our house, for reference, is perhaps the one most directly impacted by the proposed development due to its proximity, the surrounding landscape, and the tree cover in the area. About 80 feet out our back door, the lot slopes sharply down to the creek bed directly behind the wastewater facility abutting the Mission Bowl site, and we can see very clearly over the top of both buildings to the Mission Mart.

Using the GIS tools on the Johnson County AIMS website, I can see that the Mission Bowl site sits at least 40 feet lower than our lot (950' versus 998'; while I suspect the precision of these numbers, the drop is indeed substantial as I view it from my backyard). In short, the proposed development is not likely to loom over our neighborhood. In fact, based on the application materials we have seen, the proposed building wouldn't even best our own home in its most extreme elevation. To me, this is an abundantly reasonable height, and I believe this topography should weigh strongly into the decision to allow the height deviation.

If this weren't enough, I have already witnessed the developer's abundant willingness to react positively to our concerns about the development by amending the proposal to include significant screening of the rear features of the proposal. And in general, I find the proposed design to be very pleasant and attractive, welcome additions to our backyard view of Mission. (Much more attractive, incidentally, than the larger and more imposing office building not far away at 5201 Johnson Drive.) Based on what I have seen proposed and amended over the past couple of months, I have no doubt this development would make for a "good neighbor" to us in its very design.

I could continue possibly forever explaining why I think multifamily residential is right for Mission, for this site, and even for (nearly) my backyard, but I will conclude my written message tonight by simply repeating my sincere request that the proposed development be approved with necessary deviations, as I think it represents a very positive step forward for the area. I do plan on attending the hearing on $8 / 24$ by Zoom and will present any additional commentary there as appropriate.

Thank you very kindly for your consideration.
Yours truly,
Ben Chociej
5136 W 60th Terrace
P.S. Please note, in the interest of full disclosure, that I sit on the city's Parks, Recreation, and Trees Commission. My comments in this letter and in next week's hearing are purely the personal views of myself and my wife. I have no other potential conflicts of interest.

CC: Kaitlyn Service, City Planner
CC: Banks Floodman, applicant of record for the proposed development
CC: Sollie Flora \& Ken Davis, Ward 4 Councilmembers

# 5214 W. $60^{\text {th }}$ Terrace <br> Mission, KS 66205 <br> August 17, 2020 

Members of the Planning Commission
Mission, Kansas

Re: Application of Sunflower Development for 160 residential units at former Mission Bowl Site

Dear Members of the Commission:

I am writing with my objections to this proposed development for both safety and aesthetic reasons. I reside on the neighboring $60^{\text {th }}$ Terrace.

## Safety Concerns

As I understand it from the prior presentation by the developer, this project will encourage dogowners to reside because the developer will be providing some kind of dog park on the premises. However, this area lacks the necessary infrastructure to safely support the reasonably anticipated increase in pedestrian traffic that such a project will likely produce.

The project will be located on the Rock Creek Trail, and if pedestrians stay on this trail, there would not be a significant safety issue. However, people do get bored walking the same route and it is anticipated that they will soon investigate the intersecting sidewalk that takes walkers to the adjacent Birch Park.

Again it is foreseeable that the dog-walkers will not be content with walking in Birch Park. They will continue their walks as many pedestrians now do, south on Birch Street, and then west to Nall or easterly to Roeland Drive and back north to the Rock Creek Trail at Wendy's.

The problem is that there are no sidewalks on Birch Street nor $60^{\text {th }}$ Terrace. We already have numerous walkers on these streets. Those walking dogs can be distracted by their animals from oncoming traffic, so this is already a potential problem.

However, the City has approved the Gateway project, and we all must assume that one day this will be completed. 60th Terrace dead-ends on the east at the entry number one to the Gateway. To my knowledge the City did not require a traffic study for $60^{\text {th }}$ Terrace for either project, but again we can reasonably anticipate that traffic on $60^{\text {th }}$ Terrace will substantially increase from drivers looking for a shortcut from Nall to the Gateway.

Thus, we have a foreseeable and unnecessary increased perilous situation from the increased vehicle traffic coupled with an increased pedestrian traffic without the safety of sidewalks. Over time, serious injury, if not death, can be reasonably anticipated unless planning requires more study and one or more of the following steps:

1. Construction of sidewalks on Birch and $60^{\text {th }}$ Terrace. This may not be welcomed by all affected neighbors.
2. Removal of the dog park from the Project to discourage pedestrian traffic on Birch and $60^{\text {th }}$ Terrace.
3. Closure of the sidewalk entrance from Rock Creek Trail to Birch Park. This alternative will also reduce the existing pedestrian traffic on these affected streets, but be a disadvantage to current neighbors who use this sidewalk as their entry way to the Rock Creek Trail and Mission shops.

Any costs associated with this important safety remediation must be borne by the project and not current residents who will see no benefit from this project.

## Aesthetic Objections

This five story behemoth is out of place in this residential neighborhood. The Developers indicate that it is not such a bad problem because it sits lower than the houses in our neighborhood and further, it is shorter than the neighboring tornado siren.

The tornado siren performs a safety function, the residential building does not. In fact it increases traffic and the developers want to use TIF funding to divert increased tax income for twenty years so the rest of us must pay the taxes for the increased city and other governmental services that must be provided to the increased project residents who do not pay taxes.

The fourth and fifth floor residents of this project will be able to anonymously stare down into our windows and back yards. It invades our privacy unlike an office building where most tenants do not occupy their space during weekends and evenings when our current residents expect our privacy. This is a substantial and unnecessary requested use change from that of the former occupant.

I dare say that none of you would want this edifice with those peering eyes in your backyard. Please do not permit the use changes that will permit this in ours!


## Potential Path of Dog Walkers



## FIGURE 7

Site Plan


## E-mails

From: Ben Chociej
Date: Mon, Aug 10, 2020 at 11:29 AM
Subject: Re: Mission Bowl Redevelopment E-mail Distribution List
To: Kaitlyn Service [kservice@missionks.org](mailto:kservice@missionks.org)

Kaitlyn,
Thank you for the updated information. I am quite happy with the revisions to the plan so far, and as a homeowner and resident immediately behind the proposed development, I hope my support weighs deeply with city staff and the Planning Commission.

Would it be preferable to give comments in support of this project to the Planning Commission on Zoom during the $8 / 24$ meeting, or should I instead send a letter of support ahead of time? I am happy to do whichever is more impactful.

Yours, Ben Chociej

From: Grant Glenn
Date: Mon, Aug 10, 2020 at 10:10 AM
Subject: Re: FW: Mission Bowl Redevelopment E-mail Distribution List
To: Kaitlyn Service [kservice@missionks.org](mailto:kservice@missionks.org)

Kaitlyn,
Thank you. Has there been a pedestrian traffic study done regarding safety? My concern is that with a building built to encourage owners to have dogs, that many will walk their dogs through the neighboring park and onto 60th Terrace, as many residents do now. Unfortunately, there are no sidewalks and this pedestrian traffic is in potential danger and is a foreseeable danger that needs to be addressed in advance to either build the sidewalks or block off access from the park to this neighborhood. Vehicle traffic will only increase with the construction of this apartment building and the completion of the development at the end of the street.

I would like to address these concerns to the planning commissioners. Is there a way for me to write them a letter in advance of the meeting? Is there a way that I can address the meeting?

Would you please provide me the traffic study completed for the entertainment project at the east end of this area. Why did the traffic study for this project not include 60th Terrace, the nearest parallel street to this project?

Thank you.
Grant

## From: Grant Glenn

Date: Mon, Aug 10, 2020 at 2:56 PM
Subject: Re: FW: Mission Bowl Redevelopment E-mail Distribution List
To: Kaitlyn Service [kservice@missionks.org](mailto:kservice@missionks.org)

Thank you Kaitlyn,
In looking at the Gateway traffic study, it appears that Drive "1" is opposite of 60th Terrace. Am I reading the map correctly? If that is the case, can you explain why 60th Terrace was not the subject of the traffic study. It appears that if Gateway will ever open that there is likely to be a huge increase in traffic on 60th Terrace from those people going from Nall to the Gateway down 60th. Even if it is only $5 \%$ of the potential number of people who would otherwise use Johnson Drive or SM PArkway, it could be a huge influx of traffic for this residential street.

I take it from your previous response that there has been no potential study done for increase of pedestrian traffic for these streets that do not have sidewalks. It appears we have a very foreseeable hazard that will develop - substantial increase in vehicle traffic coupled with a significant increase in pedestrian traffic. Before I write to the Commissioners about addressing this potential foreseeable hazard, has staff made any recommendations that would address these concerns?

When will the staff recommendations report for the Mission Bowl project be available?
Thank you.
Grant

## From: Jim Alexander

Date: Tue, Jun 16, 2020 at 7:17 PM
Subject: Hi
To: [kservice@missionks.org](mailto:kservice@missionks.org)

Jim Alexander here, I think Brooks Floodman and C Treanor should contact jack stack or Stroud's and see if they might be interested in putting a place here in mission across from the Peanut

From: Ben Chociej
Date: Mon, Jun 15, 2020 at 8:15 PM
Subject: Mission Bowl Redevelopment

```
To: <kservice@missionks.org>
```

Thanks for hosting the meeting tonight. My wife and I would like to keep informed on the Mission Bowl redevelopment project so we are sharing our contact information as requested

I quickly want to say that we are right behind the proposed development and really are in favor of the density. We think it is vital to Mission's success. We hope to retain some of the nice woodsy privacy we have now despite the Rock Creek Construction and hope the developer can be respectful of that. But it's a great proposal so far in our opinion.

Anyway, thanks again and let us know how we can help or keep informed!

Ben \& Ellen Chociej, 60th Terrace, Mission, KS 66205

## From: Mike Patterson

Date: Mon, Jun 15, 2020 at 7:06 PM
Subject: Proposed 5399 Martway project.
To: [kservice@missionks.org](mailto:kservice@missionks.org)

Good Evening Kaitlyn,

My name is Michael Patterson and I reside at Rosewood Street, Mission, KS.
I will be attending the virtual meeting this evening on the proposed 5399 Martway project. My inquiry is to receive any proposed drawings and/or information for this project.
As I live almost directly behind this, at first pass, I am concerned as to height and density of this proposal.

I appreciate your assistance. I am happy to stop and pick up any available information.

## Sincerely,

Mike Patterson

From: [longboardswb@gmail.com](mailto:longboardswb@gmail.com)
Date: Mon, Jun 15, 2020 at 3:20 PM
Subject: Mission Bowl Apartments
To: [kservice@missionks.org](mailto:kservice@missionks.org)
Cc: [lsmith@missionks.org](mailto:lsmith@missionks.org), Commercial Ventures, LLC

Hello Kaitlyn. My name is John Bailey. I'm one of the owners of Longboards Wraps \& Bowls. We have a location on Johnson drive in Mission. I understand there is a proposal for an apartment complex at the site of the old Mission Bowl. What a great addition this would be! We've missed the Mission Bowl, and are unsure what is happening at Mission Gateway, but I see all the activity over by Target and just wish we had that over on our end of Johnson Drive. We're certainly ready for it, and I think this apartment would go a long way with that. I very much look forward to having the residents walk over for a wrap, hopefully sometime soon.

## Let

John

From: The Blind Broker
Date: Mon, Jun 15, 2020 at 3:16 PM
Subject: Development Proposal at Former Mission Bowl Site
To: [kservice@missionks.org](mailto:kservice@missionks.org)
Cc: [lsmith@misionks.org](mailto:lsmith@misionks.org), Commercial Ventures, LLC

We at The Blind Broker are excited for the possibility of a nice apartment complex at the site of the former Mission Bowl. There are so many advantages. First is having ANYTHING on this site that has been vacant for so long. Second, affordable housing in a convenient location within an outstanding school district is difficult to find and highly sought after. Third, the additional dollars generated for local businesses by those 140-150 households would be much appreciated!

We look forward to having new neighbors and increased traffic flow, which will lead to greater exposure for our business and more tax dollars for our community. We currently have a nice mix of retail in the area with restaurants, boutiques, goods, and services. An apartment complex will complement our current diversity and add to the neighborhood-feel of this area.

The project has our whole-hearted support.

## --

Rick and Joey Ford
The BlindBroker, LLC
Showroom:
5440 Martway St.
Mission KS 66205
9-5 M-F; 10-5 Sat

From: Scott Hinz

Date: Mon, Jun 15, 2020 at 2:41 PM
Subject: PROPOSED APARTMENT DEVELOPMENT AT THE FORMER MISSION BOWL
To: kservice@missionks.org [kservice@missionks.org](mailto:kservice@missionks.org)
Cc: Ismith@missionks.org [Ismith@missionks.org](mailto:Ismith@missionks.org), Commercial Ventures, LLC
I just wanted to take a moment to voice my support of the proposed apartment development at the former Mission Bowl. I believe this project would be beneficial to the city in additional revenues, revitalization of the area and drawing more people and businesses to the area. I know it would certainly help our business (Jimmy John's) to have additional people living in the area. More people $=$ more sales, more sales $=$ more taxes paid. A win/win for us all I believe .

I hope you all will help get behind this project and help move it forward.
Scott Hinz | Chief Operating Officer
HINZJJ LLC, DBA JIMMY JOHNS GOURMET SANDWICHES
www.jimmyjohns.com

On Tue, Jun 9, 2020 at 3:52 PM Susan Speck wrote:
I saw plans for the the old Mission Bowl. I am seriously opposed to this plan of a five story building on this site. This area does not need 160 more families in this area..a flood of people and traffic in an area that has been calm for the 26 years I have lived here. How about a few units of condos in this FLOOD PLANE area or a retirement/assisted living structure?

SIZE: 5 Stories... 160 new families: the 2 schools in this neighborhood will not be able to handle the surge of students (might I say from Wyandotte county) to the newly refurbished Highlands Elementary and the older Rushton School. Is the school district willing to increase class size for already stressed teachers of add structures to the school sites? Even if there were only 160 new students to Highlands, that would overwhelm that school. As a retired Elementary Art teacher in Wyandotte county schools, I can attest that, assuming many of these students are elementary age, that would be 160 new students. That is like adding 6 new classrooms of students! If there are 20 classrooms at Highlands, that is 6 new students per class.

AND please, 5 stories? There are no apartment buildings in Mission that are above 2 stories. OH! I forgot the hideous new MONOLITH on Johnson Drive near Lamar. THAT building blights Mission. It is too big and ruins the charm of our area. WE are not downtown KCMO...keep structures small. I MIGHT not have problems with some single family condos like the ones on the next street south of the M.Bowl. how about 2 or 3 single family homes?

This is a single-family-owned area. THAT is why I moved here. I lived in an area with an over abundance of apartments. I saw and EXPERIENCED loitering, kids in streets, trash, vandalism, poor landlord-ship and CRIME! I moved to Mission for its affordable housing, ease of shopping, calm small town atmosphere and good schools. I'm 66 and do not ever want to move from a house that was paid for in 2009.

TRAFFIC: I live within site of the Mission bowl site. I walk to the Peanut, Fed Ex, Dollar General, and the Bank. I also ride my bike through there. 160 families will likely add at least 160 cars creating traffic issues on Martway and Nall.

OTHER ISSUES: the Mission Bowl is set on a flood plane that is still having problems. I saw flood damage subsidence near the big sidewalk behind Fluffy Fresh Donuts last week...walls and fencing collapsing. I walk my dogs and ride my bike through the Mission Bowl parking lot and I see new subsidence all the time.
As stated before, how about a few condos or some single family homes? OH yeah, mega apartments create continuous revenue. Privately owned home or condos do not.

Is the city going to disrupt traffic and water draining on Nall and housing close to Martway to fix issues downstream near the M. Bowl? Is there a guarantee that the city will not create water issues for my home with whatever has to be done?

How about a park? a fenced dog park? small retail? stream channel widening? farmer's market? MAINTAINED tennis courts, bocci ball, basket ball or pickle ball courts? Another place for children to play is always great! That miniature golf course could be revived.

Why not see if the BEHEMOTH on Johnson Drive fills up before allowing this new build? Why not chat with Overland Park about ALL the new apartment buildings built in their downtown area? Have THEY filled up after being there a year?

Please have someone read this during the virtual Zoom meeting if I can't get that working.
I opposed the Walmart being built in the Gateway and will oppose this 5 story apartment building.

Susan Speck
Nall Avenue
Mission, KS 66202

## cheers,

## Susan Speck

hand built, funk-tional porcelain
website: www.susanspeck.com
TBN: kcclayguild.org/Teabowl-National
KCClayGuild: http://www.kcclayguild.org

## From: Susan Speck

Date: Wed, Jun 10, 2020 at 12:38 PM
Subject: Re: Mission Bowl plans
To: Kaitlyn Service [kservice@missionks.org](mailto:kservice@missionks.org)

Would the plans for this new building at the Mission Bowl site be like The Locale on Johnson Drive...'luxury apartments'? That kind of a plan would be more agreeable to me...but still NOT 5 stories. Five stories, to me, equal GREED. The bottom line here is making lots of money, not the safety of residents and keeping Mission a 'small' town'.

My fear is that all these apartments are un-rented. I fear that un-rented apartments become HUD housing in the future. HUD housing equals CRIME in my opinion. I lived near MANY HUD apartments in my pre-divorce life in KCMO. I lived with drug sales on the corner, creepy people on the sidewalk, bullets through cars and condoms in my yard. NO HUD housing. Mission needs to remain a safe, place for families...FAMILIES, not single people.

Part of choosing to BUY a home in Mission what that I DID NOT needing a home security system...feeling safe when I my daughter was small, or now, when I walk or ride my bike...even at dusk.

I still prefer no buildings taller than 2-3 stories tall anywhere in Mission...or the influx of 160+ (probably at least 300+) people in one SMALL area. Small equals cozy, small town, SAFE. The Pro-Script and The Locale ruin Mission for me. I also hate that The Locale doesn't have much of a setback from the street. I feel like I 'm in a canyon. It's like being in downtown KCMO.

KEEP MISSION SMALL! That is the lure and charm of Mission!

## cheers,

## Susan Speck

hand built, funk-tional porcelain
website: www.susanspeck.com
TBN: kcclayguild.org/Teabowl-National
KCClayGuild: http://www.kcclayguild.org

## Phone calls:

1. MD Management, who owns the parking lot to the east of the Mission Bowl site was concerned residents/ visitors were going to use their parking lot
2. Grant Glenn of W 60th Ter, Mission said that a five story building would be imposing and would not fit with the environment. He was concerned that people in the apartment building would be able to look down onto his property. He asked what protections the city has in place to ensure that financing doesn't fall through mid-project like the Gateway. He also asked if the city was considering any incentives for the project. He said many neighbors are "reasonably concerned and upset".
3. Ann Chesnut, representing the Baskin Robins in the Mission Mart, said apartments would be "wonderful".
4. Carol Hein of W 56th St, Roeland Park: "The area is getting too dense. There is already an apartment building on Johnson Drive. Roeland Park wants to replace the CVS with apartments and relocate the CVS to the Price Chopper. We have already seen a bank robbery and a shoot out at Highlands Elementary. It doesn't feel like I am living in the suburbs anymore. It feels like l'm living in Kansas City, Missouri. The apartments will be nothing but trouble and we have already had trouble."

[^0]:    Audrey McClanahan, Secretary

[^1]:    Intersection Summary

[^2]:    Intersection Summary

[^3]:    Intersection Summary

[^4]:    Intersection Summary

[^5]:    Intersection Summary

[^6]:    Intersection Summary

[^7]:    Intersection Summary

[^8]:    Intersection Summary

[^9]:    Intersection Summary

[^10]:    Intersection Summary

[^11]:    Intersection Summary

[^12]:    Intersection Summary

[^13]:    Intersection Summary

[^14]:    Intersection Summary

[^15]:    Intersection Summary

[^16]:    Intersection Summary

[^17]:    Enclosures:
    ATTACHMENT A: Existing and Proposed Site Plan
    ATTACHMENT B: 2020 Rock Creek Channel Improvement Plans (GBA)
    ATTACHMENT C: FEMA FIRM Panel
    ATTACHMENT D: FEMA LOMR, February 2012
    ATTACHMENT E: USDS Soil Map
    ATTACHMENT F: Level of Service Calculations
    ATTACHMENT G: Stormwater Treatment Details
    ATTACHMENT H: Site Hydrographs

[^18]:    This determination is based on the flood data presently available. The enclosed documents provide additional information regarding this determination, If you have any questions about this document, please contact the FEMA Map Assistance Center toll free at 1 e additional information regarding this determination. If you have LOMC Clearinghouse, 6730 Santa Barbara Court, Elkridge, MD 21075 . Additional Informat at 1-877-336-2627 (1-877-FEMA MAP) or by letter addressed to the

[^19]:    * Composite $($ Area/CN $)=[(1.360 \times 98)+(0.030 \times 74)] / 1.390$

[^20]:    * Composite (Area/CN) $=[(0.150 \times 98)+(0.020 \times 74)] / 0.170$

[^21]:    * Composite $($ Area/CN $)=[(0.400 \times 98)+(0.010 \times 74)] / 0.410$

[^22]:    * Composite (Area/CN) $=[(0.790 \times 98)+(0.060 \times 74)] / 0.850$

[^23]:    * Composite (Area/CN) $=[(0.210 \times 98)] / 0.210$

[^24]:    * Composite $($ Area/CN $)=[(0.050 \times 74)+(0.060 \times 98)] / 0.110$

[^25]:    * Composite $($ Area/CN $)=[(0.120 \times 74)+(0.070 \times 98)] / 0.190$

[^26]:    * Composite (Area/CN) $=[(0.210 \times 98)] / 0.210$

[^27]:    * Composite (Area/CN) $=[(0.210 \times 98)] / 0.210$

[^28]:    * Composite (Area/CN) $=[(0.090 \times 74)+(1.200 \times 98)] / 1.290$

[^29]:    * Composite $($ Area/CN $)=[(1.360 \times 98)+(0.030 \times 74)] / 1.390$

[^30]:    * Composite (Area/CN) $=[(0.150 \times 98)+(0.020 \times 74)] / 0.170$

[^31]:    * Composite (Area/CN) $=[(0.400 \times 98)+(0.010 \times 74)] / 0.410$

[^32]:    * Composite (Area/CN) $=[(0.790 \times 98)+(0.060 \times 74)] / 0.850$

[^33]:    * Composite (Area/CN) $=[(0.210 \times 98)] / 0.210$

[^34]:    * Composite $($ Area/CN $)=[(0.050 \times 74)+(0.060 \times 98)] / 0.110$

[^35]:    * Composite (Area/CN) $=[(0.210 \times 74)+(0.150 \times 98)] / 0.360$

[^36]:    * Composite $($ Area/CN $)=[(0.120 \times 74)+(0.070 \times 98)] / 0.190$

[^37]:    * Composite $($ Area/CN $)=[(0.210 \times 98)] / 0.210$

[^38]:    * Composite (Area/CN) $=[(0.210 \times 98)] / 0.210$

[^39]:    * Composite (Area/CN) $=[(0.090 \times 74)+(1.200 \times 98)] / 1.290$

[^40]:    * Composite $($ Area/CN $)=[(1.360 \times 98)+(0.030 \times 74)] / 1.390$

[^41]:    * Composite $($ Area/CN $)=[(0.150 \times 98)+(0.020 \times 74)] / 0.170$

[^42]:    * Composite $($ Area/CN $)=[(0.340 \times 98)+(0.010 \times 74)] / 0.350$

[^43]:    * Composite (Area/CN) $=[(0.790 \times 98)+(0.060 \times 74)] / 0.850$

[^44]:    * Composite $($ Area/CN $)=[(0.210 \times 98)] / 0.210$

[^45]:    * Composite $($ Area/CN $)=[(0.050 \times 74)+(0.060 \times 98)] / 0.110$

[^46]:    * Composite (Area/CN) $=[(0.210 \times 74)+(0.150 \times 98)] / 0.360$

[^47]:    * Composite (Area/CN) $=[(0.030 \times 74)+(0.170 \times 98)] / 0.200$

[^48]:    * Composite (Area/CN) $=[(0.210 \times 98)] / 0.210$

[^49]:    * Composite (Area/CN) $=[(0.210 \times 98)] / 0.210$

